51 lines
1.5 KiB
Python
51 lines
1.5 KiB
Python
|
"""
|
||
|
===============
|
||
|
Degree Analysis
|
||
|
===============
|
||
|
|
||
|
This example shows several ways to visualize the distribution of the degree of
|
||
|
nodes with two common techniques: a *degree-rank plot* and a
|
||
|
*degree histogram*.
|
||
|
|
||
|
In this example, a random Graph is generated with 100 nodes. The degree of
|
||
|
each node is determined, and a figure is generated showing three things:
|
||
|
1. The subgraph of connected components
|
||
|
2. The degree-rank plot for the Graph, and
|
||
|
3. The degree histogram
|
||
|
"""
|
||
|
import networkx as nx
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
G = nx.gnp_random_graph(100, 0.02, seed=10374196)
|
||
|
|
||
|
degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
|
||
|
dmax = max(degree_sequence)
|
||
|
|
||
|
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
|
||
|
# Create a gridspec for adding subplots of different sizes
|
||
|
axgrid = fig.add_gridspec(5, 4)
|
||
|
|
||
|
ax0 = fig.add_subplot(axgrid[0:3, :])
|
||
|
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
|
||
|
pos = nx.spring_layout(Gcc, seed=10396953)
|
||
|
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
|
||
|
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
|
||
|
ax0.set_title("Connected components of G")
|
||
|
ax0.set_axis_off()
|
||
|
|
||
|
ax1 = fig.add_subplot(axgrid[3:, :2])
|
||
|
ax1.plot(degree_sequence, "b-", marker="o")
|
||
|
ax1.set_title("Degree Rank Plot")
|
||
|
ax1.set_ylabel("Degree")
|
||
|
ax1.set_xlabel("Rank")
|
||
|
|
||
|
ax2 = fig.add_subplot(axgrid[3:, 2:])
|
||
|
ax2.bar(*np.unique(degree_sequence, return_counts=True))
|
||
|
ax2.set_title("Degree histogram")
|
||
|
ax2.set_xlabel("Degree")
|
||
|
ax2.set_ylabel("# of Nodes")
|
||
|
|
||
|
fig.tight_layout()
|
||
|
plt.show()
|