""" =============== Degree Analysis =============== This example shows several ways to visualize the distribution of the degree of nodes with two common techniques: a *degree-rank plot* and a *degree histogram*. In this example, a random Graph is generated with 100 nodes. The degree of each node is determined, and a figure is generated showing three things: 1. The subgraph of connected components 2. The degree-rank plot for the Graph, and 3. The degree histogram """ import networkx as nx import numpy as np import matplotlib.pyplot as plt G = nx.gnp_random_graph(100, 0.02, seed=10374196) degree_sequence = sorted((d for n, d in G.degree()), reverse=True) dmax = max(degree_sequence) fig = plt.figure("Degree of a random graph", figsize=(8, 8)) # Create a gridspec for adding subplots of different sizes axgrid = fig.add_gridspec(5, 4) ax0 = fig.add_subplot(axgrid[0:3, :]) Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0]) pos = nx.spring_layout(Gcc, seed=10396953) nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) ax0.set_title("Connected components of G") ax0.set_axis_off() ax1 = fig.add_subplot(axgrid[3:, :2]) ax1.plot(degree_sequence, "b-", marker="o") ax1.set_title("Degree Rank Plot") ax1.set_ylabel("Degree") ax1.set_xlabel("Rank") ax2 = fig.add_subplot(axgrid[3:, 2:]) ax2.bar(*np.unique(degree_sequence, return_counts=True)) ax2.set_title("Degree histogram") ax2.set_xlabel("Degree") ax2.set_ylabel("# of Nodes") fig.tight_layout() plt.show()