45 lines
1.3 KiB
Python
45 lines
1.3 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
from agate.aggregations.base import Aggregation
|
||
|
from agate.aggregations.has_nulls import HasNulls
|
||
|
from agate.aggregations.median import Median
|
||
|
from agate.data_types import Number
|
||
|
from agate.exceptions import DataTypeError
|
||
|
from agate.utils import median
|
||
|
from agate.warns import warn_null_calculation
|
||
|
|
||
|
|
||
|
class MAD(Aggregation):
|
||
|
"""
|
||
|
Calculate the `median absolute deviation <http://en.wikipedia.org/wiki/Median_absolute_deviation>`_
|
||
|
of a column.
|
||
|
|
||
|
:param column_name:
|
||
|
The name of a column containing :class:`.Number` data.
|
||
|
"""
|
||
|
def __init__(self, column_name):
|
||
|
self._column_name = column_name
|
||
|
self._median = Median(column_name)
|
||
|
|
||
|
def get_aggregate_data_type(self, table):
|
||
|
return Number()
|
||
|
|
||
|
def validate(self, table):
|
||
|
column = table.columns[self._column_name]
|
||
|
|
||
|
if not isinstance(column.data_type, Number):
|
||
|
raise DataTypeError('MAD can only be applied to columns containing Number data.')
|
||
|
|
||
|
has_nulls = HasNulls(self._column_name).run(table)
|
||
|
|
||
|
if has_nulls:
|
||
|
warn_null_calculation(self, column)
|
||
|
|
||
|
def run(self, table):
|
||
|
column = table.columns[self._column_name]
|
||
|
|
||
|
data = column.values_without_nulls_sorted()
|
||
|
m = self._median.run(table)
|
||
|
|
||
|
return median(tuple(abs(n - m) for n in data))
|