#!/usr/bin/env python from agate.aggregations.base import Aggregation from agate.aggregations.has_nulls import HasNulls from agate.aggregations.median import Median from agate.data_types import Number from agate.exceptions import DataTypeError from agate.utils import median from agate.warns import warn_null_calculation class MAD(Aggregation): """ Calculate the `median absolute deviation `_ of a column. :param column_name: The name of a column containing :class:`.Number` data. """ def __init__(self, column_name): self._column_name = column_name self._median = Median(column_name) def get_aggregate_data_type(self, table): return Number() def validate(self, table): column = table.columns[self._column_name] if not isinstance(column.data_type, Number): raise DataTypeError('MAD can only be applied to columns containing Number data.') has_nulls = HasNulls(self._column_name).run(table) if has_nulls: warn_null_calculation(self, column) def run(self, table): column = table.columns[self._column_name] data = column.values_without_nulls_sorted() m = self._median.run(table) return median(tuple(abs(n - m) for n in data))