dbt-selly/dbt-env/lib/python3.8/site-packages/networkx/tests/test_convert.py

322 lines
12 KiB
Python

import pytest
import networkx as nx
from networkx.utils import nodes_equal, edges_equal, graphs_equal
from networkx.convert import (
to_networkx_graph,
to_dict_of_dicts,
from_dict_of_dicts,
to_dict_of_lists,
from_dict_of_lists,
)
from networkx.generators.classic import barbell_graph, cycle_graph
class TestConvert:
def edgelists_equal(self, e1, e2):
return sorted(sorted(e) for e in e1) == sorted(sorted(e) for e in e2)
def test_simple_graphs(self):
for dest, source in [
(to_dict_of_dicts, from_dict_of_dicts),
(to_dict_of_lists, from_dict_of_lists),
]:
G = barbell_graph(10, 3)
G.graph = {}
dod = dest(G)
# Dict of [dicts, lists]
GG = source(dod)
assert graphs_equal(G, GG)
GW = to_networkx_graph(dod)
assert graphs_equal(G, GW)
GI = nx.Graph(dod)
assert graphs_equal(G, GI)
# With nodelist keyword
P4 = nx.path_graph(4)
P3 = nx.path_graph(3)
P4.graph = {}
P3.graph = {}
dod = dest(P4, nodelist=[0, 1, 2])
Gdod = nx.Graph(dod)
assert graphs_equal(Gdod, P3)
def test_exceptions(self):
# NX graph
class G:
adj = None
pytest.raises(nx.NetworkXError, to_networkx_graph, G)
# pygraphviz agraph
class G:
is_strict = None
pytest.raises(nx.NetworkXError, to_networkx_graph, G)
# Dict of [dicts, lists]
G = {"a": 0}
pytest.raises(TypeError, to_networkx_graph, G)
# list or generator of edges
class G:
next = None
pytest.raises(nx.NetworkXError, to_networkx_graph, G)
# no match
pytest.raises(nx.NetworkXError, to_networkx_graph, "a")
def test_digraphs(self):
for dest, source in [
(to_dict_of_dicts, from_dict_of_dicts),
(to_dict_of_lists, from_dict_of_lists),
]:
G = cycle_graph(10)
# Dict of [dicts, lists]
dod = dest(G)
GG = source(dod)
assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dod)
assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
GI = nx.Graph(dod)
assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GI.edges()))
G = cycle_graph(10, create_using=nx.DiGraph)
dod = dest(G)
GG = source(dod, create_using=nx.DiGraph)
assert sorted(G.nodes()) == sorted(GG.nodes())
assert sorted(G.edges()) == sorted(GG.edges())
GW = to_networkx_graph(dod, create_using=nx.DiGraph)
assert sorted(G.nodes()) == sorted(GW.nodes())
assert sorted(G.edges()) == sorted(GW.edges())
GI = nx.DiGraph(dod)
assert sorted(G.nodes()) == sorted(GI.nodes())
assert sorted(G.edges()) == sorted(GI.edges())
def test_graph(self):
g = nx.cycle_graph(10)
G = nx.Graph()
G.add_nodes_from(g)
G.add_weighted_edges_from((u, v, u) for u, v in g.edges())
# Dict of dicts
dod = to_dict_of_dicts(G)
GG = from_dict_of_dicts(dod, create_using=nx.Graph)
assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dod, create_using=nx.Graph)
assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
GI = nx.Graph(dod)
assert sorted(G.nodes()) == sorted(GI.nodes())
assert sorted(G.edges()) == sorted(GI.edges())
# Dict of lists
dol = to_dict_of_lists(G)
GG = from_dict_of_lists(dol, create_using=nx.Graph)
# dict of lists throws away edge data so set it to none
enone = [(u, v, {}) for (u, v, d) in G.edges(data=True)]
assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert edges_equal(enone, sorted(GG.edges(data=True)))
GW = to_networkx_graph(dol, create_using=nx.Graph)
assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert edges_equal(enone, sorted(GW.edges(data=True)))
GI = nx.Graph(dol)
assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert edges_equal(enone, sorted(GI.edges(data=True)))
def test_with_multiedges_self_loops(self):
G = cycle_graph(10)
XG = nx.Graph()
XG.add_nodes_from(G)
XG.add_weighted_edges_from((u, v, u) for u, v in G.edges())
XGM = nx.MultiGraph()
XGM.add_nodes_from(G)
XGM.add_weighted_edges_from((u, v, u) for u, v in G.edges())
XGM.add_edge(0, 1, weight=2) # multiedge
XGS = nx.Graph()
XGS.add_nodes_from(G)
XGS.add_weighted_edges_from((u, v, u) for u, v in G.edges())
XGS.add_edge(0, 0, weight=100) # self loop
# Dict of dicts
# with self loops, OK
dod = to_dict_of_dicts(XGS)
GG = from_dict_of_dicts(dod, create_using=nx.Graph)
assert nodes_equal(XGS.nodes(), GG.nodes())
assert edges_equal(XGS.edges(), GG.edges())
GW = to_networkx_graph(dod, create_using=nx.Graph)
assert nodes_equal(XGS.nodes(), GW.nodes())
assert edges_equal(XGS.edges(), GW.edges())
GI = nx.Graph(dod)
assert nodes_equal(XGS.nodes(), GI.nodes())
assert edges_equal(XGS.edges(), GI.edges())
# Dict of lists
# with self loops, OK
dol = to_dict_of_lists(XGS)
GG = from_dict_of_lists(dol, create_using=nx.Graph)
# dict of lists throws away edge data so set it to none
enone = [(u, v, {}) for (u, v, d) in XGS.edges(data=True)]
assert nodes_equal(sorted(XGS.nodes()), sorted(GG.nodes()))
assert edges_equal(enone, sorted(GG.edges(data=True)))
GW = to_networkx_graph(dol, create_using=nx.Graph)
assert nodes_equal(sorted(XGS.nodes()), sorted(GW.nodes()))
assert edges_equal(enone, sorted(GW.edges(data=True)))
GI = nx.Graph(dol)
assert nodes_equal(sorted(XGS.nodes()), sorted(GI.nodes()))
assert edges_equal(enone, sorted(GI.edges(data=True)))
# Dict of dicts
# with multiedges, OK
dod = to_dict_of_dicts(XGM)
GG = from_dict_of_dicts(dod, create_using=nx.MultiGraph, multigraph_input=True)
assert nodes_equal(sorted(XGM.nodes()), sorted(GG.nodes()))
assert edges_equal(sorted(XGM.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dod, create_using=nx.MultiGraph, multigraph_input=True)
assert nodes_equal(sorted(XGM.nodes()), sorted(GW.nodes()))
assert edges_equal(sorted(XGM.edges()), sorted(GW.edges()))
GI = nx.MultiGraph(dod)
assert nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
assert sorted(XGM.edges()) == sorted(GI.edges())
GE = from_dict_of_dicts(dod, create_using=nx.MultiGraph, multigraph_input=False)
assert nodes_equal(sorted(XGM.nodes()), sorted(GE.nodes()))
assert sorted(XGM.edges()) != sorted(GE.edges())
GI = nx.MultiGraph(XGM)
assert nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
assert edges_equal(sorted(XGM.edges()), sorted(GI.edges()))
GM = nx.MultiGraph(G)
assert nodes_equal(sorted(GM.nodes()), sorted(G.nodes()))
assert edges_equal(sorted(GM.edges()), sorted(G.edges()))
# Dict of lists
# with multiedges, OK, but better write as DiGraph else you'll
# get double edges
dol = to_dict_of_lists(G)
GG = from_dict_of_lists(dol, create_using=nx.MultiGraph)
assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
GW = to_networkx_graph(dol, create_using=nx.MultiGraph)
assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
GI = nx.MultiGraph(dol)
assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
assert edges_equal(sorted(G.edges()), sorted(GI.edges()))
def test_edgelists(self):
P = nx.path_graph(4)
e = [(0, 1), (1, 2), (2, 3)]
G = nx.Graph(e)
assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
assert edges_equal(sorted(G.edges()), sorted(P.edges()))
assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))
e = [(0, 1, {}), (1, 2, {}), (2, 3, {})]
G = nx.Graph(e)
assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
assert edges_equal(sorted(G.edges()), sorted(P.edges()))
assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))
e = ((n, n + 1) for n in range(3))
G = nx.Graph(e)
assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
assert edges_equal(sorted(G.edges()), sorted(P.edges()))
assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))
def test_directed_to_undirected(self):
edges1 = [(0, 1), (1, 2), (2, 0)]
edges2 = [(0, 1), (1, 2), (0, 2)]
assert self.edgelists_equal(nx.Graph(nx.DiGraph(edges1)).edges(), edges1)
assert self.edgelists_equal(nx.Graph(nx.DiGraph(edges2)).edges(), edges1)
assert self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges1)).edges(), edges1)
assert self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges2)).edges(), edges1)
assert self.edgelists_equal(
nx.MultiGraph(nx.MultiDiGraph(edges1)).edges(), edges1
)
assert self.edgelists_equal(
nx.MultiGraph(nx.MultiDiGraph(edges2)).edges(), edges1
)
assert self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges1)).edges(), edges1)
assert self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges2)).edges(), edges1)
def test_attribute_dict_integrity(self):
# we must not replace dict-like graph data structures with dicts
G = nx.OrderedGraph()
G.add_nodes_from("abc")
H = to_networkx_graph(G, create_using=nx.OrderedGraph)
assert list(H.nodes) == list(G.nodes)
H = nx.OrderedDiGraph(G)
assert list(H.nodes) == list(G.nodes)
def test_to_edgelist(self):
G = nx.Graph([(1, 1)])
elist = nx.to_edgelist(G, nodelist=list(G))
assert edges_equal(G.edges(data=True), elist)
def test_custom_node_attr_dict_safekeeping(self):
class custom_dict(dict):
pass
class Custom(nx.Graph):
node_attr_dict_factory = custom_dict
g = nx.Graph()
g.add_node(1, weight=1)
h = Custom(g)
assert isinstance(g._node[1], dict)
assert isinstance(h._node[1], custom_dict)
# this raise exception
# h._node.update((n, dd.copy()) for n, dd in g.nodes.items())
# assert isinstance(h._node[1], custom_dict)
@pytest.mark.parametrize(
"edgelist",
(
# Graph with no edge data
[(0, 1), (1, 2)],
# Graph with edge data
[(0, 1, {"weight": 1.0}), (1, 2, {"weight": 2.0})],
),
)
def test_to_dict_of_dicts_with_edgedata_param(edgelist):
G = nx.Graph()
G.add_edges_from(edgelist)
# Innermost dict value == edge_data when edge_data != None.
# In the case when G has edge data, it is overwritten
expected = {0: {1: 10}, 1: {0: 10, 2: 10}, 2: {1: 10}}
assert nx.to_dict_of_dicts(G, edge_data=10) == expected
def test_to_dict_of_dicts_with_edgedata_and_nodelist():
G = nx.path_graph(5)
nodelist = [2, 3, 4]
expected = {2: {3: 10}, 3: {2: 10, 4: 10}, 4: {3: 10}}
assert nx.to_dict_of_dicts(G, nodelist=nodelist, edge_data=10) == expected
def test_to_dict_of_dicts_with_edgedata_multigraph():
"""Multi edge data overwritten when edge_data != None"""
G = nx.MultiGraph()
G.add_edge(0, 1, key="a")
G.add_edge(0, 1, key="b")
# Multi edge data lost when edge_data is not None
expected = {0: {1: 10}, 1: {0: 10}}
assert nx.to_dict_of_dicts(G, edge_data=10) == expected
def test_to_networkx_graph_non_edgelist():
invalid_edgelist = [1, 2, 3]
with pytest.raises(nx.NetworkXError, match="Input is not a valid edge list"):
nx.to_networkx_graph(invalid_edgelist)