288 lines
11 KiB
Python
288 lines
11 KiB
Python
|
|
from copy import deepcopy
|
|
from dbt.context.context_config import ContextConfig
|
|
from dbt.contracts.graph.parsed import ParsedModelNode
|
|
import dbt.flags as flags
|
|
from dbt.logger import GLOBAL_LOGGER as logger
|
|
from dbt.node_types import NodeType
|
|
from dbt.parser.base import SimpleSQLParser
|
|
from dbt.parser.search import FileBlock
|
|
import dbt.tracking as tracking
|
|
from dbt import utils
|
|
from dbt_extractor import ExtractionError, py_extract_from_source # type: ignore
|
|
from functools import reduce
|
|
from itertools import chain
|
|
import random
|
|
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
|
|
|
# debug loglines are used for integration testing. If you change
|
|
# the code at the beginning of the debug line, change the tests in
|
|
# test/integration/072_experimental_parser_tests/test_all_experimental_parser.py
|
|
|
|
|
|
class ModelParser(SimpleSQLParser[ParsedModelNode]):
|
|
def parse_from_dict(self, dct, validate=True) -> ParsedModelNode:
|
|
if validate:
|
|
ParsedModelNode.validate(dct)
|
|
return ParsedModelNode.from_dict(dct)
|
|
|
|
@property
|
|
def resource_type(self) -> NodeType:
|
|
return NodeType.Model
|
|
|
|
@classmethod
|
|
def get_compiled_path(cls, block: FileBlock):
|
|
return block.path.relative_path
|
|
|
|
# TODO when this is turned on by default, simplify the nasty if/else tree inside this method.
|
|
def render_update(
|
|
self, node: ParsedModelNode, config: ContextConfig
|
|
) -> None:
|
|
# TODO go back to 1/100 when this is turned on by default.
|
|
# `True` roughly 1/50 times this function is called
|
|
sample: bool = random.randint(1, 51) == 50
|
|
|
|
# top-level declaration of variables
|
|
experimentally_parsed: Optional[Union[str, Dict[str, List[Any]]]] = None
|
|
config_call_dict: Dict[str, Any] = {}
|
|
source_calls: List[List[str]] = []
|
|
result: List[str] = []
|
|
|
|
# run the experimental parser if the flag is on or if we're sampling
|
|
if flags.USE_EXPERIMENTAL_PARSER or sample:
|
|
if self._has_banned_macro(node):
|
|
experimentally_parsed = "has_banned_macro"
|
|
else:
|
|
# run the experimental parser and return the results
|
|
try:
|
|
experimentally_parsed = py_extract_from_source(
|
|
node.raw_sql
|
|
)
|
|
logger.debug(f"1699: statically parsed {node.path}")
|
|
# if we want information on what features are barring the experimental
|
|
# parser from reading model files, this is where we would add that
|
|
# since that information is stored in the `ExtractionError`.
|
|
except ExtractionError:
|
|
experimentally_parsed = "cannot_parse"
|
|
|
|
# if the parser succeeded, extract some data in easy-to-compare formats
|
|
if isinstance(experimentally_parsed, dict):
|
|
# create second config format
|
|
for c in experimentally_parsed['configs']:
|
|
ContextConfig._add_config_call(config_call_dict, {c[0]: c[1]})
|
|
|
|
# format sources TODO change extractor to match this type
|
|
for s in experimentally_parsed['sources']:
|
|
source_calls.append([s[0], s[1]])
|
|
experimentally_parsed['sources'] = source_calls
|
|
|
|
# if we're sampling during a normal dbt run, populate an entirely new node to compare
|
|
if not flags.USE_EXPERIMENTAL_PARSER:
|
|
if sample and isinstance(experimentally_parsed, dict):
|
|
# if this will _never_ mutate anything `self` we could avoid these deep copies,
|
|
# but we can't really guarantee that going forward.
|
|
model_parser_copy = self.partial_deepcopy()
|
|
exp_sample_node = deepcopy(node)
|
|
exp_sample_config = deepcopy(config)
|
|
|
|
model_parser_copy.populate(
|
|
exp_sample_node,
|
|
exp_sample_config,
|
|
experimentally_parsed
|
|
)
|
|
|
|
super().render_update(node, config)
|
|
|
|
# if the --use-experimental-parser flag was set, and the experimental parser succeeded
|
|
elif isinstance(experimentally_parsed, dict):
|
|
# update the unrendered config with values from the static parser.
|
|
# values from yaml files are in there already
|
|
self.populate(
|
|
node,
|
|
config,
|
|
experimentally_parsed
|
|
)
|
|
|
|
self.manifest._parsing_info.static_analysis_parsed_path_count += 1
|
|
|
|
# the experimental parser didn't run on this model.
|
|
# fall back to python jinja rendering.
|
|
elif isinstance(experimentally_parsed, str):
|
|
if experimentally_parsed == "cannot_parse":
|
|
result += ["01_stable_parser_cannot_parse"]
|
|
logger.debug(
|
|
f"1602: parser fallback to jinja for {node.path}"
|
|
)
|
|
elif experimentally_parsed == "has_banned_macro":
|
|
result += ["08_has_banned_macro"]
|
|
logger.debug(
|
|
f"1601: parser fallback to jinja because of macro override for {node.path}"
|
|
)
|
|
|
|
super().render_update(node, config)
|
|
# otherwise jinja rendering.
|
|
else:
|
|
super().render_update(node, config)
|
|
|
|
if sample and isinstance(experimentally_parsed, dict):
|
|
# now that the sample succeeded, is populated and the current
|
|
# values are rendered, compare the two and collect the tracking messages
|
|
result += _get_exp_sample_result(
|
|
exp_sample_node,
|
|
exp_sample_config,
|
|
node,
|
|
config,
|
|
)
|
|
|
|
# fire a tracking event. this fires one event for every sample
|
|
# so that we have data on a per file basis. Not only can we expect
|
|
# no false positives or misses, we can expect the number model
|
|
# files parseable by the experimental parser to match our internal
|
|
# testing.
|
|
if result and tracking.active_user is not None: # None in some tests
|
|
tracking.track_experimental_parser_sample({
|
|
"project_id": self.root_project.hashed_name(),
|
|
"file_id": utils.get_hash(node),
|
|
"status": result
|
|
})
|
|
|
|
# checks for banned macros
|
|
def _has_banned_macro(
|
|
self, node: ParsedModelNode
|
|
) -> bool:
|
|
# first check if there is a banned macro defined in scope for this model file
|
|
root_project_name = self.root_project.project_name
|
|
project_name = node.package_name
|
|
banned_macros = ['ref', 'source', 'config']
|
|
|
|
all_banned_macro_keys: Iterator[str] = chain.from_iterable(
|
|
map(
|
|
lambda name: [
|
|
f"macro.{project_name}.{name}",
|
|
f"macro.{root_project_name}.{name}"
|
|
],
|
|
banned_macros
|
|
)
|
|
)
|
|
|
|
return reduce(
|
|
lambda z, key: z or (key in self.manifest.macros),
|
|
all_banned_macro_keys,
|
|
False
|
|
)
|
|
|
|
# this method updates the model note rendered and unrendered config as well
|
|
# as the node object. Used to populate these values when circumventing jinja
|
|
# rendering like the static parser.
|
|
def populate(
|
|
self,
|
|
node: ParsedModelNode,
|
|
config: ContextConfig,
|
|
experimentally_parsed: Dict[str, Any]
|
|
):
|
|
# manually fit configs in
|
|
config._config_call_dict = _get_config_call_dict(experimentally_parsed)
|
|
|
|
# if there are hooks present this, it WILL render jinja. Will need to change
|
|
# when the experimental parser supports hooks
|
|
self.update_parsed_node_config(node, config)
|
|
|
|
# update the unrendered config with values from the file.
|
|
# values from yaml files are in there already
|
|
node.unrendered_config.update(experimentally_parsed['configs'])
|
|
|
|
# set refs and sources on the node object
|
|
node.refs += experimentally_parsed['refs']
|
|
node.sources += experimentally_parsed['sources']
|
|
|
|
# configs don't need to be merged into the node because they
|
|
# are read from config._config_call_dict
|
|
|
|
# the manifest is often huge so this method avoids deepcopying it
|
|
def partial_deepcopy(self):
|
|
return ModelParser(
|
|
deepcopy(self.project),
|
|
self.manifest,
|
|
deepcopy(self.root_project)
|
|
)
|
|
|
|
|
|
# pure function. safe to use elsewhere, but unlikely to be useful outside this file.
|
|
def _get_config_call_dict(
|
|
static_parser_result: Dict[str, List[Any]]
|
|
) -> Dict[str, Any]:
|
|
config_call_dict: Dict[str, Any] = {}
|
|
|
|
for c in static_parser_result['configs']:
|
|
ContextConfig._add_config_call(config_call_dict, {c[0]: c[1]})
|
|
|
|
return config_call_dict
|
|
|
|
|
|
# returns a list of string codes to be sent as a tracking event
|
|
def _get_exp_sample_result(
|
|
sample_node: ParsedModelNode,
|
|
sample_config: ContextConfig,
|
|
node: ParsedModelNode,
|
|
config: ContextConfig
|
|
) -> List[str]:
|
|
result: List[Tuple[int, str]] = _get_sample_result(sample_node, sample_config, node, config)
|
|
|
|
def process(codemsg):
|
|
code, msg = codemsg
|
|
return f"0{code}_experimental_{msg}"
|
|
|
|
return list(map(process, result))
|
|
|
|
|
|
# returns a list of messages and int codes and messages that need a single digit
|
|
# prefix to be prepended before being sent as a tracking event
|
|
def _get_sample_result(
|
|
sample_node: ParsedModelNode,
|
|
sample_config: ContextConfig,
|
|
node: ParsedModelNode,
|
|
config: ContextConfig
|
|
) -> List[Tuple[int, str]]:
|
|
result: List[Tuple[int, str]] = []
|
|
# look for false positive configs
|
|
for k in sample_config._config_call_dict:
|
|
if k not in config._config_call_dict:
|
|
result += [(2, "false_positive_config_value")]
|
|
break
|
|
|
|
# look for missed configs
|
|
for k in config._config_call_dict.keys():
|
|
if k not in sample_config._config_call_dict.keys():
|
|
result += [(3, "missed_config_value")]
|
|
break
|
|
|
|
# look for false positive sources
|
|
for s in sample_node.sources:
|
|
if s not in node.sources:
|
|
result += [(4, "false_positive_source_value")]
|
|
break
|
|
|
|
# look for missed sources
|
|
for s in node.sources:
|
|
if s not in sample_node.sources:
|
|
result += [(5, "missed_source_value")]
|
|
break
|
|
|
|
# look for false positive refs
|
|
for r in sample_node.refs:
|
|
if r not in node.refs:
|
|
result += [(6, "false_positive_ref_value")]
|
|
break
|
|
|
|
# look for missed refs
|
|
for r in node.refs:
|
|
if r not in sample_node.refs:
|
|
result += [(7, "missed_ref_value")]
|
|
break
|
|
|
|
# if there are no errors, return a success value
|
|
if not result:
|
|
result = [(0, "exact_match")]
|
|
|
|
return result
|