dbt-selly/dbt-env/lib/python3.8/site-packages/dbt/adapters/base/column.py

154 lines
5.1 KiB
Python

from dataclasses import dataclass
import re
from typing import Dict, ClassVar, Any, Optional
from dbt.exceptions import RuntimeException
@dataclass
class Column:
TYPE_LABELS: ClassVar[Dict[str, str]] = {
'STRING': 'TEXT',
'TIMESTAMP': 'TIMESTAMP',
'FLOAT': 'FLOAT',
'INTEGER': 'INT'
}
column: str
dtype: str
char_size: Optional[int] = None
numeric_precision: Optional[Any] = None
numeric_scale: Optional[Any] = None
@classmethod
def translate_type(cls, dtype: str) -> str:
return cls.TYPE_LABELS.get(dtype.upper(), dtype)
@classmethod
def create(cls, name, label_or_dtype: str) -> 'Column':
column_type = cls.translate_type(label_or_dtype)
return cls(name, column_type)
@property
def name(self) -> str:
return self.column
@property
def quoted(self) -> str:
return '"{}"'.format(self.column)
@property
def data_type(self) -> str:
if self.is_string():
return Column.string_type(self.string_size())
elif self.is_numeric():
return Column.numeric_type(self.dtype, self.numeric_precision,
self.numeric_scale)
else:
return self.dtype
def is_string(self) -> bool:
return self.dtype.lower() in ['text', 'character varying', 'character',
'varchar']
def is_number(self):
return any([self.is_integer(), self.is_numeric(), self.is_float()])
def is_float(self):
return self.dtype.lower() in [
# floats
'real', 'float4', 'float', 'double precision', 'float8'
]
def is_integer(self) -> bool:
return self.dtype.lower() in [
# real types
'smallint', 'integer', 'bigint',
'smallserial', 'serial', 'bigserial',
# aliases
'int2', 'int4', 'int8',
'serial2', 'serial4', 'serial8',
]
def is_numeric(self) -> bool:
return self.dtype.lower() in ['numeric', 'decimal']
def string_size(self) -> int:
if not self.is_string():
raise RuntimeException("Called string_size() on non-string field!")
if self.dtype == 'text' or self.char_size is None:
# char_size should never be None. Handle it reasonably just in case
return 256
else:
return int(self.char_size)
def can_expand_to(self, other_column: 'Column') -> bool:
"""returns True if this column can be expanded to the size of the
other column"""
if not self.is_string() or not other_column.is_string():
return False
return other_column.string_size() > self.string_size()
def literal(self, value: Any) -> str:
return "{}::{}".format(value, self.data_type)
@classmethod
def string_type(cls, size: int) -> str:
return "character varying({})".format(size)
@classmethod
def numeric_type(cls, dtype: str, precision: Any, scale: Any) -> str:
# This could be decimal(...), numeric(...), number(...)
# Just use whatever was fed in here -- don't try to get too clever
if precision is None or scale is None:
return dtype
else:
return "{}({},{})".format(dtype, precision, scale)
def __repr__(self) -> str:
return "<Column {} ({})>".format(self.name, self.data_type)
@classmethod
def from_description(cls, name: str, raw_data_type: str) -> 'Column':
match = re.match(r'([^(]+)(\([^)]+\))?', raw_data_type)
if match is None:
raise RuntimeException(
f'Could not interpret data type "{raw_data_type}"'
)
data_type, size_info = match.groups()
char_size = None
numeric_precision = None
numeric_scale = None
if size_info is not None:
# strip out the parentheses
size_info = size_info[1:-1]
parts = size_info.split(',')
if len(parts) == 1:
try:
char_size = int(parts[0])
except ValueError:
raise RuntimeException(
f'Could not interpret data_type "{raw_data_type}": '
f'could not convert "{parts[0]}" to an integer'
)
elif len(parts) == 2:
try:
numeric_precision = int(parts[0])
except ValueError:
raise RuntimeException(
f'Could not interpret data_type "{raw_data_type}": '
f'could not convert "{parts[0]}" to an integer'
)
try:
numeric_scale = int(parts[1])
except ValueError:
raise RuntimeException(
f'Could not interpret data_type "{raw_data_type}": '
f'could not convert "{parts[1]}" to an integer'
)
return cls(
name, data_type, char_size, numeric_precision, numeric_scale
)