""" =========== Eigenvalues =========== Create an G{n,m} random graph and compute the eigenvalues. """ import matplotlib.pyplot as plt import networkx as nx import numpy.linalg n = 1000 # 1000 nodes m = 5000 # 5000 edges G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility L = nx.normalized_laplacian_matrix(G) e = numpy.linalg.eigvals(L.A) print("Largest eigenvalue:", max(e)) print("Smallest eigenvalue:", min(e)) plt.hist(e, bins=100) # histogram with 100 bins plt.xlim(0, 2) # eigenvalues between 0 and 2 plt.show()