""" Miscellaneous Helpers for NetworkX. These are not imported into the base networkx namespace but can be accessed, for example, as >>> import networkx >>> networkx.utils.make_list_of_ints({1, 2, 3}) [1, 2, 3] >>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP 1 """ from collections import defaultdict, deque from collections.abc import Iterable, Iterator, Sized import warnings import sys import uuid from itertools import tee, chain import networkx as nx np = nx.lazy_import("numpy") __all__ = [ "is_string_like", "iterable", "empty_generator", "flatten", "make_list_of_ints", "is_list_of_ints", "make_str", "generate_unique_node", "default_opener", "dict_to_numpy_array", "dict_to_numpy_array1", "dict_to_numpy_array2", "is_iterator", "arbitrary_element", "consume", "pairwise", "groups", "to_tuple", "create_random_state", "create_py_random_state", "PythonRandomInterface", "nodes_equal", "edges_equal", "graphs_equal", ] # some cookbook stuff # used in deciding whether something is a bunch of nodes, edges, etc. # see G.add_nodes and others in Graph Class in networkx/base.py def is_string_like(obj): # from John Hunter, types-free version """Check if obj is string. .. deprecated:: 2.6 This is deprecated and will be removed in NetworkX v3.0. """ msg = ( "is_string_like is deprecated and will be removed in 3.0." "Use isinstance(obj, str) instead." ) warnings.warn(msg, DeprecationWarning) return isinstance(obj, str) def iterable(obj): """Return True if obj is iterable with a well-defined len(). .. deprecated:: 2.6 This is deprecated and will be removed in NetworkX v3.0. """ msg = ( "iterable is deprecated and will be removed in 3.0." "Use isinstance(obj, (collections.abc.Iterable, collections.abc.Sized)) instead." ) warnings.warn(msg, DeprecationWarning) if hasattr(obj, "__iter__"): return True try: len(obj) except: return False return True def empty_generator(): """Return a generator with no members. .. deprecated:: 2.6 """ warnings.warn( "empty_generator is deprecated and will be removed in v3.0.", DeprecationWarning ) return (i for i in ()) def flatten(obj, result=None): """Return flattened version of (possibly nested) iterable object.""" if not isinstance(obj, (Iterable, Sized)) or isinstance(obj, str): return obj if result is None: result = [] for item in obj: if not isinstance(item, (Iterable, Sized)) or isinstance(item, str): result.append(item) else: flatten(item, result) return tuple(result) def make_list_of_ints(sequence): """Return list of ints from sequence of integral numbers. All elements of the sequence must satisfy int(element) == element or a ValueError is raised. Sequence is iterated through once. If sequence is a list, the non-int values are replaced with ints. So, no new list is created """ if not isinstance(sequence, list): result = [] for i in sequence: errmsg = f"sequence is not all integers: {i}" try: ii = int(i) except ValueError: raise nx.NetworkXError(errmsg) from None if ii != i: raise nx.NetworkXError(errmsg) result.append(ii) return result # original sequence is a list... in-place conversion to ints for indx, i in enumerate(sequence): errmsg = f"sequence is not all integers: {i}" if isinstance(i, int): continue try: ii = int(i) except ValueError: raise nx.NetworkXError(errmsg) from None if ii != i: raise nx.NetworkXError(errmsg) sequence[indx] = ii return sequence def is_list_of_ints(intlist): """Return True if list is a list of ints. .. deprecated:: 2.6 This is deprecated and will be removed in NetworkX v3.0. """ msg = ( "is_list_of_ints is deprecated and will be removed in 3.0." "See also: ``networkx.utils.make_list_of_ints.``" ) warnings.warn(msg, DeprecationWarning, stacklevel=2) if not isinstance(intlist, list): return False for i in intlist: if not isinstance(i, int): return False return True def make_str(x): """Returns the string representation of t. .. deprecated:: 2.6 This is deprecated and will be removed in NetworkX v3.0. """ msg = "make_str is deprecated and will be removed in 3.0. Use str instead." warnings.warn(msg, DeprecationWarning) return str(x) def generate_unique_node(): """Generate a unique node label. .. deprecated:: 2.6 This is deprecated and will be removed in NetworkX v3.0. """ msg = "generate_unique_node is deprecated and will be removed in 3.0. Use uuid.uuid4 instead." warnings.warn(msg, DeprecationWarning) return str(uuid.uuid4()) def default_opener(filename): """Opens `filename` using system's default program. .. deprecated:: 2.6 default_opener is deprecated and will be removed in version 3.0. Consider an image processing library to open images, such as Pillow:: from PIL import Image Image.open(filename).show() Parameters ---------- filename : str The path of the file to be opened. """ warnings.warn( "default_opener is deprecated and will be removed in version 3.0. ", DeprecationWarning, ) from subprocess import call cmds = { "darwin": ["open"], "linux": ["xdg-open"], "linux2": ["xdg-open"], "win32": ["cmd.exe", "/C", "start", ""], } cmd = cmds[sys.platform] + [filename] call(cmd) def dict_to_numpy_array(d, mapping=None): """Convert a dictionary of dictionaries to a numpy array with optional mapping.""" try: return dict_to_numpy_array2(d, mapping) except (AttributeError, TypeError): # AttributeError is when no mapping was provided and v.keys() fails. # TypeError is when a mapping was provided and d[k1][k2] fails. return dict_to_numpy_array1(d, mapping) def dict_to_numpy_array2(d, mapping=None): """Convert a dictionary of dictionaries to a 2d numpy array with optional mapping. """ if mapping is None: s = set(d.keys()) for k, v in d.items(): s.update(v.keys()) mapping = dict(zip(s, range(len(s)))) n = len(mapping) a = np.zeros((n, n)) for k1, i in mapping.items(): for k2, j in mapping.items(): try: a[i, j] = d[k1][k2] except KeyError: pass return a def dict_to_numpy_array1(d, mapping=None): """Convert a dictionary of numbers to a 1d numpy array with optional mapping. """ if mapping is None: s = set(d.keys()) mapping = dict(zip(s, range(len(s)))) n = len(mapping) a = np.zeros(n) for k1, i in mapping.items(): i = mapping[k1] a[i] = d[k1] return a def is_iterator(obj): """Returns True if and only if the given object is an iterator object. .. deprecated:: 2.6.0 Deprecated in favor of ``isinstance(obj, collections.abc.Iterator)`` """ msg = ( "is_iterator is deprecated and will be removed in version 3.0. " "Use ``isinstance(obj, collections.abc.Iterator)`` instead." ) warnings.warn(msg, DeprecationWarning, stacklevel=2) has_next_attr = hasattr(obj, "__next__") or hasattr(obj, "next") return iter(obj) is obj and has_next_attr def arbitrary_element(iterable): """Returns an arbitrary element of `iterable` without removing it. This is most useful for "peeking" at an arbitrary element of a set, but can be used for any list, dictionary, etc., as well. Parameters ---------- iterable : `abc.collections.Iterable` instance Any object that implements ``__iter__``, e.g. set, dict, list, tuple, etc. Returns ------- The object that results from ``next(iter(iterable))`` Raises ------ ValueError If `iterable` is an iterator (because the current implementation of this function would consume an element from the iterator). Examples -------- Arbitrary elements from common Iterable objects: >>> nx.utils.arbitrary_element([1, 2, 3]) # list 1 >>> nx.utils.arbitrary_element((1, 2, 3)) # tuple 1 >>> nx.utils.arbitrary_element({1, 2, 3}) # set 1 >>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])} >>> nx.utils.arbitrary_element(d) # dict_keys 1 >>> nx.utils.arbitrary_element(d.values()) # dict values 3 `str` is also an Iterable: >>> nx.utils.arbitrary_element("hello") 'h' :exc:`ValueError` is raised if `iterable` is an iterator: >>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable >>> nx.utils.arbitrary_element(iterator) Traceback (most recent call last): ... ValueError: cannot return an arbitrary item from an iterator Notes ----- This function does not return a *random* element. If `iterable` is ordered, sequential calls will return the same value:: >>> l = [1, 2, 3] >>> nx.utils.arbitrary_element(l) 1 >>> nx.utils.arbitrary_element(l) 1 """ if isinstance(iterable, Iterator): raise ValueError("cannot return an arbitrary item from an iterator") # Another possible implementation is ``for x in iterable: return x``. return next(iter(iterable)) # Recipe from the itertools documentation. def consume(iterator): """Consume the iterator entirely. .. deprecated:: 2.6 This is deprecated and will be removed in NetworkX v3.0. """ # Feed the entire iterator into a zero-length deque. msg = ( "consume is deprecated and will be removed in version 3.0. " "Use ``collections.deque(iterator, maxlen=0)`` instead." ) warnings.warn(msg, DeprecationWarning, stacklevel=2) deque(iterator, maxlen=0) # Recipe from the itertools documentation. def pairwise(iterable, cyclic=False): "s -> (s0, s1), (s1, s2), (s2, s3), ..." a, b = tee(iterable) first = next(b, None) if cyclic is True: return zip(a, chain(b, (first,))) return zip(a, b) def groups(many_to_one): """Converts a many-to-one mapping into a one-to-many mapping. `many_to_one` must be a dictionary whose keys and values are all :term:`hashable`. The return value is a dictionary mapping values from `many_to_one` to sets of keys from `many_to_one` that have that value. Examples -------- >>> from networkx.utils import groups >>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3} >>> groups(many_to_one) # doctest: +SKIP {1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}} """ one_to_many = defaultdict(set) for v, k in many_to_one.items(): one_to_many[k].add(v) return dict(one_to_many) def to_tuple(x): """Converts lists to tuples. Examples -------- >>> from networkx.utils import to_tuple >>> a_list = [1, 2, [1, 4]] >>> to_tuple(a_list) (1, 2, (1, 4)) """ if not isinstance(x, (tuple, list)): return x return tuple(map(to_tuple, x)) def create_random_state(random_state=None): """Returns a numpy.random.RandomState or numpy.random.Generator instance depending on input. Parameters ---------- random_state : int or NumPy RandomState or Generator instance, optional (default=None) If int, return a numpy.random.RandomState instance set with seed=int. if `numpy.random.RandomState` instance, return it. if `numpy.random.Generator` instance, return it. if None or numpy.random, return the global random number generator used by numpy.random. """ if random_state is None or random_state is np.random: return np.random.mtrand._rand if isinstance(random_state, np.random.RandomState): return random_state if isinstance(random_state, int): return np.random.RandomState(random_state) if isinstance(random_state, np.random.Generator): return random_state msg = ( f"{random_state} cannot be used to create a numpy.random.RandomState or\n" "numpy.random.Generator instance" ) raise ValueError(msg) class PythonRandomInterface: def __init__(self, rng=None): try: import numpy as np except ImportError: msg = "numpy not found, only random.random available." warnings.warn(msg, ImportWarning) if rng is None: self._rng = np.random.mtrand._rand else: self._rng = rng def random(self): return self._rng.random() def uniform(self, a, b): return a + (b - a) * self._rng.random() def randrange(self, a, b=None): if isinstance(self._rng, np.random.Generator): return self._rng.integers(a, b) return self._rng.randint(a, b) # NOTE: the numpy implementations of `choice` don't support strings, so # this cannot be replaced with self._rng.choice def choice(self, seq): if isinstance(self._rng, np.random.Generator): idx = self._rng.integers(0, len(seq)) else: idx = self._rng.randint(0, len(seq)) return seq[idx] def gauss(self, mu, sigma): return self._rng.normal(mu, sigma) def shuffle(self, seq): return self._rng.shuffle(seq) # Some methods don't match API for numpy RandomState. # Commented out versions are not used by NetworkX def sample(self, seq, k): return self._rng.choice(list(seq), size=(k,), replace=False) def randint(self, a, b): if isinstance(self._rng, np.random.Generator): return self._rng.integers(a, b + 1) return self._rng.randint(a, b + 1) # exponential as expovariate with 1/argument, def expovariate(self, scale): return self._rng.exponential(1 / scale) # pareto as paretovariate with 1/argument, def paretovariate(self, shape): return self._rng.pareto(shape) # weibull as weibullvariate multiplied by beta, # def weibullvariate(self, alpha, beta): # return self._rng.weibull(alpha) * beta # # def triangular(self, low, high, mode): # return self._rng.triangular(low, mode, high) # # def choices(self, seq, weights=None, cum_weights=None, k=1): # return self._rng.choice(seq def create_py_random_state(random_state=None): """Returns a random.Random instance depending on input. Parameters ---------- random_state : int or random number generator or None (default=None) If int, return a random.Random instance set with seed=int. if random.Random instance, return it. if None or the `random` package, return the global random number generator used by `random`. if np.random package, return the global numpy random number generator wrapped in a PythonRandomInterface class. if np.random.RandomState instance, return it wrapped in PythonRandomInterface if a PythonRandomInterface instance, return it """ import random try: import numpy as np if random_state is np.random: return PythonRandomInterface(np.random.mtrand._rand) if isinstance(random_state, np.random.RandomState): return PythonRandomInterface(random_state) if isinstance(random_state, PythonRandomInterface): return random_state except ImportError: pass if random_state is None or random_state is random: return random._inst if isinstance(random_state, random.Random): return random_state if isinstance(random_state, int): return random.Random(random_state) msg = f"{random_state} cannot be used to generate a random.Random instance" raise ValueError(msg) def nodes_equal(nodes1, nodes2): """Check if nodes are equal. Equality here means equal as Python objects. Node data must match if included. The order of nodes is not relevant. Parameters ---------- nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples Returns ------- bool True if nodes are equal, False otherwise. """ nlist1 = list(nodes1) nlist2 = list(nodes2) try: d1 = dict(nlist1) d2 = dict(nlist2) except (ValueError, TypeError): d1 = dict.fromkeys(nlist1) d2 = dict.fromkeys(nlist2) return d1 == d2 def edges_equal(edges1, edges2): """Check if edges are equal. Equality here means equal as Python objects. Edge data must match if included. The order of the edges is not relevant. Parameters ---------- edges1, edges2 : iterables of with u, v nodes as edge tuples (u, v), or edge tuples with data dicts (u, v, d), or edge tuples with keys and data dicts (u, v, k, d) Returns ------- bool True if edges are equal, False otherwise. """ from collections import defaultdict d1 = defaultdict(dict) d2 = defaultdict(dict) c1 = 0 for c1, e in enumerate(edges1): u, v = e[0], e[1] data = [e[2:]] if v in d1[u]: data = d1[u][v] + data d1[u][v] = data d1[v][u] = data c2 = 0 for c2, e in enumerate(edges2): u, v = e[0], e[1] data = [e[2:]] if v in d2[u]: data = d2[u][v] + data d2[u][v] = data d2[v][u] = data if c1 != c2: return False # can check one direction because lengths are the same. for n, nbrdict in d1.items(): for nbr, datalist in nbrdict.items(): if n not in d2: return False if nbr not in d2[n]: return False d2datalist = d2[n][nbr] for data in datalist: if datalist.count(data) != d2datalist.count(data): return False return True def graphs_equal(graph1, graph2): """Check if graphs are equal. Equality here means equal as Python objects (not isomorphism). Node, edge and graph data must match. Parameters ---------- graph1, graph2 : graph Returns ------- bool True if graphs are equal, False otherwise. """ return ( graph1.adj == graph2.adj and graph1.nodes == graph2.nodes and graph1.graph == graph2.graph )