""" Eigenvalue spectrum of graphs. """ import networkx as nx __all__ = [ "laplacian_spectrum", "adjacency_spectrum", "modularity_spectrum", "normalized_laplacian_spectrum", "bethe_hessian_spectrum", ] def laplacian_spectrum(G, weight="weight"): """Returns eigenvalues of the Laplacian of G Parameters ---------- G : graph A NetworkX graph weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- evals : NumPy array Eigenvalues Notes ----- For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_array for other options. See Also -------- laplacian_matrix """ import scipy as sp import scipy.linalg # call as sp.linalg return sp.linalg.eigvalsh(nx.laplacian_matrix(G, weight=weight).todense()) def normalized_laplacian_spectrum(G, weight="weight"): """Return eigenvalues of the normalized Laplacian of G Parameters ---------- G : graph A NetworkX graph weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- evals : NumPy array Eigenvalues Notes ----- For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_array for other options. See Also -------- normalized_laplacian_matrix """ import scipy as sp import scipy.linalg # call as sp.linalg return sp.linalg.eigvalsh( nx.normalized_laplacian_matrix(G, weight=weight).todense() ) def adjacency_spectrum(G, weight="weight"): """Returns eigenvalues of the adjacency matrix of G. Parameters ---------- G : graph A NetworkX graph weight : string or None, optional (default='weight') The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns ------- evals : NumPy array Eigenvalues Notes ----- For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_array for other options. See Also -------- adjacency_matrix """ import scipy as sp import scipy.linalg # call as sp.linalg return sp.linalg.eigvals(nx.adjacency_matrix(G, weight=weight).todense()) def modularity_spectrum(G): """Returns eigenvalues of the modularity matrix of G. Parameters ---------- G : Graph A NetworkX Graph or DiGraph Returns ------- evals : NumPy array Eigenvalues See Also -------- modularity_matrix References ---------- .. [1] M. E. J. Newman, "Modularity and community structure in networks", Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006. """ import scipy as sp import scipy.linalg # call as sp.linalg if G.is_directed(): return sp.linalg.eigvals(nx.directed_modularity_matrix(G)) else: return sp.linalg.eigvals(nx.modularity_matrix(G)) def bethe_hessian_spectrum(G, r=None): """Returns eigenvalues of the Bethe Hessian matrix of G. Parameters ---------- G : Graph A NetworkX Graph or DiGraph r : float Regularizer parameter Returns ------- evals : NumPy array Eigenvalues See Also -------- bethe_hessian_matrix References ---------- .. [1] A. Saade, F. Krzakala and L. Zdeborová "Spectral clustering of graphs with the bethe hessian", Advances in Neural Information Processing Systems. 2014. """ import scipy as sp import scipy.linalg # call as sp.linalg return sp.linalg.eigvalsh(nx.bethe_hessian_matrix(G, r).todense())