"""Test sequences for graphiness. """ import heapq import networkx as nx __all__ = [ "is_graphical", "is_multigraphical", "is_pseudographical", "is_digraphical", "is_valid_degree_sequence_erdos_gallai", "is_valid_degree_sequence_havel_hakimi", ] def is_graphical(sequence, method="eg"): """Returns True if sequence is a valid degree sequence. A degree sequence is valid if some graph can realize it. Parameters ---------- sequence : list or iterable container A sequence of integer node degrees method : "eg" | "hh" (default: 'eg') The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm [EG1960]_, [choudum1986]_, and "hh" to the Havel-Hakimi algorithm [havel1955]_, [hakimi1962]_, [CL1996]_. Returns ------- valid : bool True if the sequence is a valid degree sequence and False if not. Examples -------- >>> G = nx.path_graph(4) >>> sequence = (d for n, d in G.degree()) >>> nx.is_graphical(sequence) True References ---------- .. [EG1960] Erdős and Gallai, Mat. Lapok 11 264, 1960. .. [choudum1986] S.A. Choudum. "A simple proof of the Erdős-Gallai theorem on graph sequences." Bulletin of the Australian Mathematical Society, 33, pp 67-70, 1986. https://doi.org/10.1017/S0004972700002872 .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs" Casopis Pest. Mat. 80, 477-480, 1955. .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962. .. [CL1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs", Chapman and Hall/CRC, 1996. """ if method == "eg": valid = is_valid_degree_sequence_erdos_gallai(list(sequence)) elif method == "hh": valid = is_valid_degree_sequence_havel_hakimi(list(sequence)) else: msg = "`method` must be 'eg' or 'hh'" raise nx.NetworkXException(msg) return valid def _basic_graphical_tests(deg_sequence): # Sort and perform some simple tests on the sequence deg_sequence = nx.utils.make_list_of_ints(deg_sequence) p = len(deg_sequence) num_degs = [0] * p dmax, dmin, dsum, n = 0, p, 0, 0 for d in deg_sequence: # Reject if degree is negative or larger than the sequence length if d < 0 or d >= p: raise nx.NetworkXUnfeasible # Process only the non-zero integers elif d > 0: dmax, dmin, dsum, n = max(dmax, d), min(dmin, d), dsum + d, n + 1 num_degs[d] += 1 # Reject sequence if it has odd sum or is oversaturated if dsum % 2 or dsum > n * (n - 1): raise nx.NetworkXUnfeasible return dmax, dmin, dsum, n, num_degs def is_valid_degree_sequence_havel_hakimi(deg_sequence): r"""Returns True if deg_sequence can be realized by a simple graph. The validation proceeds using the Havel-Hakimi theorem [havel1955]_, [hakimi1962]_, [CL1996]_. Worst-case run time is $O(s)$ where $s$ is the sum of the sequence. Parameters ---------- deg_sequence : list A list of integers where each element specifies the degree of a node in a graph. Returns ------- valid : bool True if deg_sequence is graphical and False if not. Notes ----- The ZZ condition says that for the sequence d if .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} then d is graphical. This was shown in Theorem 6 in [1]_. References ---------- .. [1] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs" Casopis Pest. Mat. 80, 477-480, 1955. .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962. .. [CL1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs", Chapman and Hall/CRC, 1996. """ try: dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1): return True modstubs = [0] * (dmax + 1) # Successively reduce degree sequence by removing the maximum degree while n > 0: # Retrieve the maximum degree in the sequence while num_degs[dmax] == 0: dmax -= 1 # If there are not enough stubs to connect to, then the sequence is # not graphical if dmax > n - 1: return False # Remove largest stub in list num_degs[dmax], n = num_degs[dmax] - 1, n - 1 # Reduce the next dmax largest stubs mslen = 0 k = dmax for i in range(dmax): while num_degs[k] == 0: k -= 1 num_degs[k], n = num_degs[k] - 1, n - 1 if k > 1: modstubs[mslen] = k - 1 mslen += 1 # Add back to the list any non-zero stubs that were removed for i in range(mslen): stub = modstubs[i] num_degs[stub], n = num_degs[stub] + 1, n + 1 return True def is_valid_degree_sequence_erdos_gallai(deg_sequence): r"""Returns True if deg_sequence can be realized by a simple graph. The validation is done using the Erdős-Gallai theorem [EG1960]_. Parameters ---------- deg_sequence : list A list of integers Returns ------- valid : bool True if deg_sequence is graphical and False if not. Notes ----- This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is $O(n)$ where $n$ is the length of the sequence. Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence, .. math:: \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k) = k(n-1) - ( k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j ) A strong index k is any index where d_k >= k and the value n_j is the number of occurrences of j in d. The maximal strong index is called the Durfee index. This particular rearrangement comes from the proof of Theorem 3 in [2]_. The ZZ condition says that for the sequence d if .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} then d is graphical. This was shown in Theorem 6 in [2]_. References ---------- .. [1] A. Tripathi and S. Vijay. "A note on a theorem of Erdős & Gallai", Discrete Mathematics, 265, pp. 417-420 (2003). .. [2] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). .. [EG1960] Erdős and Gallai, Mat. Lapok 11 264, 1960. """ try: dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1): return True # Perform the EG checks using the reformulation of Zverovich and Zverovich k, sum_deg, sum_nj, sum_jnj = 0, 0, 0, 0 for dk in range(dmax, dmin - 1, -1): if dk < k + 1: # Check if already past Durfee index return True if num_degs[dk] > 0: run_size = num_degs[dk] # Process a run of identical-valued degrees if dk < k + run_size: # Check if end of run is past Durfee index run_size = dk - k # Adjust back to Durfee index sum_deg += run_size * dk for v in range(run_size): sum_nj += num_degs[k + v] sum_jnj += (k + v) * num_degs[k + v] k += run_size if sum_deg > k * (n - 1) - k * sum_nj + sum_jnj: return False return True def is_multigraphical(sequence): """Returns True if some multigraph can realize the sequence. Parameters ---------- sequence : list A list of integers Returns ------- valid : bool True if deg_sequence is a multigraphic degree sequence and False if not. Notes ----- The worst-case run time is $O(n)$ where $n$ is the length of the sequence. References ---------- .. [1] S. L. Hakimi. "On the realizability of a set of integers as degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506 (1962). """ try: deg_sequence = nx.utils.make_list_of_ints(sequence) except nx.NetworkXError: return False dsum, dmax = 0, 0 for d in deg_sequence: if d < 0: return False dsum, dmax = dsum + d, max(dmax, d) if dsum % 2 or dsum < 2 * dmax: return False return True def is_pseudographical(sequence): """Returns True if some pseudograph can realize the sequence. Every nonnegative integer sequence with an even sum is pseudographical (see [1]_). Parameters ---------- sequence : list or iterable container A sequence of integer node degrees Returns ------- valid : bool True if the sequence is a pseudographic degree sequence and False if not. Notes ----- The worst-case run time is $O(n)$ where n is the length of the sequence. References ---------- .. [1] F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976). """ try: deg_sequence = nx.utils.make_list_of_ints(sequence) except nx.NetworkXError: return False return sum(deg_sequence) % 2 == 0 and min(deg_sequence) >= 0 def is_digraphical(in_sequence, out_sequence): r"""Returns True if some directed graph can realize the in- and out-degree sequences. Parameters ---------- in_sequence : list or iterable container A sequence of integer node in-degrees out_sequence : list or iterable container A sequence of integer node out-degrees Returns ------- valid : bool True if in and out-sequences are digraphic False if not. Notes ----- This algorithm is from Kleitman and Wang [1]_. The worst case runtime is $O(s \times \log n)$ where $s$ and $n$ are the sum and length of the sequences respectively. References ---------- .. [1] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973) """ try: in_deg_sequence = nx.utils.make_list_of_ints(in_sequence) out_deg_sequence = nx.utils.make_list_of_ints(out_sequence) except nx.NetworkXError: return False # Process the sequences and form two heaps to store degree pairs with # either zero or non-zero out degrees sumin, sumout, nin, nout = 0, 0, len(in_deg_sequence), len(out_deg_sequence) maxn = max(nin, nout) maxin = 0 if maxn == 0: return True stubheap, zeroheap = [], [] for n in range(maxn): in_deg, out_deg = 0, 0 if n < nout: out_deg = out_deg_sequence[n] if n < nin: in_deg = in_deg_sequence[n] if in_deg < 0 or out_deg < 0: return False sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg) if in_deg > 0: stubheap.append((-1 * out_deg, -1 * in_deg)) elif out_deg > 0: zeroheap.append(-1 * out_deg) if sumin != sumout: return False heapq.heapify(stubheap) heapq.heapify(zeroheap) modstubs = [(0, 0)] * (maxin + 1) # Successively reduce degree sequence by removing the maximum out degree while stubheap: # Take the first value in the sequence with non-zero in degree (freeout, freein) = heapq.heappop(stubheap) freein *= -1 if freein > len(stubheap) + len(zeroheap): return False # Attach out stubs to the nodes with the most in stubs mslen = 0 for i in range(freein): if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0]): stubout = heapq.heappop(zeroheap) stubin = 0 else: (stubout, stubin) = heapq.heappop(stubheap) if stubout == 0: return False # Check if target is now totally connected if stubout + 1 < 0 or stubin < 0: modstubs[mslen] = (stubout + 1, stubin) mslen += 1 # Add back the nodes to the heap that still have available stubs for i in range(mslen): stub = modstubs[i] if stub[1] < 0: heapq.heappush(stubheap, stub) else: heapq.heappush(zeroheap, stub[0]) if freeout < 0: heapq.heappush(zeroheap, freeout) return True