158 lines
4.5 KiB
Python
158 lines
4.5 KiB
Python
|
"""
|
||
|
Cuthill-McKee ordering of graph nodes to produce sparse matrices
|
||
|
"""
|
||
|
from collections import deque
|
||
|
from operator import itemgetter
|
||
|
|
||
|
import networkx as nx
|
||
|
from ..utils import arbitrary_element
|
||
|
|
||
|
__all__ = ["cuthill_mckee_ordering", "reverse_cuthill_mckee_ordering"]
|
||
|
|
||
|
|
||
|
def cuthill_mckee_ordering(G, heuristic=None):
|
||
|
"""Generate an ordering (permutation) of the graph nodes to make
|
||
|
a sparse matrix.
|
||
|
|
||
|
Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
heuristic : function, optional
|
||
|
Function to choose starting node for RCM algorithm. If None
|
||
|
a node from a pseudo-peripheral pair is used. A user-defined function
|
||
|
can be supplied that takes a graph object and returns a single node.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nodes : generator
|
||
|
Generator of nodes in Cuthill-McKee ordering.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from networkx.utils import cuthill_mckee_ordering
|
||
|
>>> G = nx.path_graph(4)
|
||
|
>>> rcm = list(cuthill_mckee_ordering(G))
|
||
|
>>> A = nx.adjacency_matrix(G, nodelist=rcm)
|
||
|
|
||
|
Smallest degree node as heuristic function:
|
||
|
|
||
|
>>> def smallest_degree(G):
|
||
|
... return min(G, key=G.degree)
|
||
|
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
reverse_cuthill_mckee_ordering
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The optimal solution the bandwidth reduction is NP-complete [2]_.
|
||
|
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] E. Cuthill and J. McKee.
|
||
|
Reducing the bandwidth of sparse symmetric matrices,
|
||
|
In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
|
||
|
http://doi.acm.org/10.1145/800195.805928
|
||
|
.. [2] Steven S. Skiena. 1997. The Algorithm Design Manual.
|
||
|
Springer-Verlag New York, Inc., New York, NY, USA.
|
||
|
"""
|
||
|
for c in nx.connected_components(G):
|
||
|
yield from connected_cuthill_mckee_ordering(G.subgraph(c), heuristic)
|
||
|
|
||
|
|
||
|
def reverse_cuthill_mckee_ordering(G, heuristic=None):
|
||
|
"""Generate an ordering (permutation) of the graph nodes to make
|
||
|
a sparse matrix.
|
||
|
|
||
|
Uses the reverse Cuthill-McKee heuristic (based on breadth-first search)
|
||
|
[1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
heuristic : function, optional
|
||
|
Function to choose starting node for RCM algorithm. If None
|
||
|
a node from a pseudo-peripheral pair is used. A user-defined function
|
||
|
can be supplied that takes a graph object and returns a single node.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nodes : generator
|
||
|
Generator of nodes in reverse Cuthill-McKee ordering.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from networkx.utils import reverse_cuthill_mckee_ordering
|
||
|
>>> G = nx.path_graph(4)
|
||
|
>>> rcm = list(reverse_cuthill_mckee_ordering(G))
|
||
|
>>> A = nx.adjacency_matrix(G, nodelist=rcm)
|
||
|
|
||
|
Smallest degree node as heuristic function:
|
||
|
|
||
|
>>> def smallest_degree(G):
|
||
|
... return min(G, key=G.degree)
|
||
|
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cuthill_mckee_ordering
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The optimal solution the bandwidth reduction is NP-complete [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] E. Cuthill and J. McKee.
|
||
|
Reducing the bandwidth of sparse symmetric matrices,
|
||
|
In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.
|
||
|
http://doi.acm.org/10.1145/800195.805928
|
||
|
.. [2] Steven S. Skiena. 1997. The Algorithm Design Manual.
|
||
|
Springer-Verlag New York, Inc., New York, NY, USA.
|
||
|
"""
|
||
|
return reversed(list(cuthill_mckee_ordering(G, heuristic=heuristic)))
|
||
|
|
||
|
|
||
|
def connected_cuthill_mckee_ordering(G, heuristic=None):
|
||
|
# the cuthill mckee algorithm for connected graphs
|
||
|
if heuristic is None:
|
||
|
start = pseudo_peripheral_node(G)
|
||
|
else:
|
||
|
start = heuristic(G)
|
||
|
visited = {start}
|
||
|
queue = deque([start])
|
||
|
while queue:
|
||
|
parent = queue.popleft()
|
||
|
yield parent
|
||
|
nd = sorted(list(G.degree(set(G[parent]) - visited)), key=itemgetter(1))
|
||
|
children = [n for n, d in nd]
|
||
|
visited.update(children)
|
||
|
queue.extend(children)
|
||
|
|
||
|
|
||
|
def pseudo_peripheral_node(G):
|
||
|
# helper for cuthill-mckee to find a node in a "pseudo peripheral pair"
|
||
|
# to use as good starting node
|
||
|
u = arbitrary_element(G)
|
||
|
lp = 0
|
||
|
v = u
|
||
|
while True:
|
||
|
spl = dict(nx.shortest_path_length(G, v))
|
||
|
l = max(spl.values())
|
||
|
if l <= lp:
|
||
|
break
|
||
|
lp = l
|
||
|
farthest = (n for n, dist in spl.items() if dist == l)
|
||
|
v, deg = min(G.degree(farthest), key=itemgetter(1))
|
||
|
return v
|