85 lines
2.6 KiB
Python
85 lines
2.6 KiB
Python
|
"""Bethe Hessian or deformed Laplacian matrix of graphs."""
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = ["bethe_hessian_matrix"]
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@not_implemented_for("multigraph")
|
||
|
def bethe_hessian_matrix(G, r=None, nodelist=None):
|
||
|
r"""Returns the Bethe Hessian matrix of G.
|
||
|
|
||
|
The Bethe Hessian is a family of matrices parametrized by r, defined as
|
||
|
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
|
||
|
diagonal matrix of node degrees, and I is the identify matrix. It is equal
|
||
|
to the graph laplacian when the regularizer r = 1.
|
||
|
|
||
|
The default choice of regularizer should be the ratio [2]
|
||
|
|
||
|
.. math::
|
||
|
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : Graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
r : float
|
||
|
Regularizer parameter
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
H : scipy.sparse.csr_matrix
|
||
|
The Bethe Hessian matrix of G, with paramter r.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> k = [3, 2, 2, 1, 0]
|
||
|
>>> G = nx.havel_hakimi_graph(k)
|
||
|
>>> H = nx.modularity_matrix(G)
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bethe_hessian_spectrum
|
||
|
adjacency_matrix
|
||
|
laplacian_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
||
|
"Spectral clustering of graphs with the bethe hessian",
|
||
|
Advances in Neural Information Processing Systems. 2014.
|
||
|
.. [2] C. M. Lee, E. Levina
|
||
|
"Estimating the number of communities in networks by spectral methods"
|
||
|
arXiv:1507.00827, 2015.
|
||
|
"""
|
||
|
import scipy as sp
|
||
|
import scipy.sparse # call as sp.sparse
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
if r is None:
|
||
|
r = sum(d ** 2 for v, d in nx.degree(G)) / sum(d for v, d in nx.degree(G)) - 1
|
||
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, format="csr")
|
||
|
n, m = A.shape
|
||
|
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
||
|
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
||
|
# TODO: Rm csr_array wrapper when eye array creation becomes available
|
||
|
I = sp.sparse.csr_array(sp.sparse.eye(m, n, format="csr"))
|
||
|
import warnings
|
||
|
|
||
|
warnings.warn(
|
||
|
"bethe_hessian_matrix will return a scipy.sparse array instead of a matrix in Networkx 3.0",
|
||
|
FutureWarning,
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
# TODO: Remove the csr_matrix wrapper in NetworkX 3.0
|
||
|
return sp.sparse.csr_matrix((r ** 2 - 1) * I - r * A + D)
|