459 lines
11 KiB
Python
459 lines
11 KiB
Python
|
# See https://github.com/networkx/networkx/pull/1474
|
||
|
# Copyright 2011 Reya Group <http://www.reyagroup.com>
|
||
|
# Copyright 2011 Alex Levenson <alex@isnotinvain.com>
|
||
|
# Copyright 2011 Diederik van Liere <diederik.vanliere@rotman.utoronto.ca>
|
||
|
"""Functions for analyzing triads of a graph."""
|
||
|
|
||
|
from itertools import combinations, permutations
|
||
|
from collections import defaultdict
|
||
|
from random import sample
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = [
|
||
|
"triadic_census",
|
||
|
"is_triad",
|
||
|
"all_triplets",
|
||
|
"all_triads",
|
||
|
"triads_by_type",
|
||
|
"triad_type",
|
||
|
"random_triad",
|
||
|
]
|
||
|
|
||
|
#: The integer codes representing each type of triad.
|
||
|
#:
|
||
|
#: Triads that are the same up to symmetry have the same code.
|
||
|
TRICODES = (
|
||
|
1,
|
||
|
2,
|
||
|
2,
|
||
|
3,
|
||
|
2,
|
||
|
4,
|
||
|
6,
|
||
|
8,
|
||
|
2,
|
||
|
6,
|
||
|
5,
|
||
|
7,
|
||
|
3,
|
||
|
8,
|
||
|
7,
|
||
|
11,
|
||
|
2,
|
||
|
6,
|
||
|
4,
|
||
|
8,
|
||
|
5,
|
||
|
9,
|
||
|
9,
|
||
|
13,
|
||
|
6,
|
||
|
10,
|
||
|
9,
|
||
|
14,
|
||
|
7,
|
||
|
14,
|
||
|
12,
|
||
|
15,
|
||
|
2,
|
||
|
5,
|
||
|
6,
|
||
|
7,
|
||
|
6,
|
||
|
9,
|
||
|
10,
|
||
|
14,
|
||
|
4,
|
||
|
9,
|
||
|
9,
|
||
|
12,
|
||
|
8,
|
||
|
13,
|
||
|
14,
|
||
|
15,
|
||
|
3,
|
||
|
7,
|
||
|
8,
|
||
|
11,
|
||
|
7,
|
||
|
12,
|
||
|
14,
|
||
|
15,
|
||
|
8,
|
||
|
14,
|
||
|
13,
|
||
|
15,
|
||
|
11,
|
||
|
15,
|
||
|
15,
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
#: The names of each type of triad. The order of the elements is
|
||
|
#: important: it corresponds to the tricodes given in :data:`TRICODES`.
|
||
|
TRIAD_NAMES = (
|
||
|
"003",
|
||
|
"012",
|
||
|
"102",
|
||
|
"021D",
|
||
|
"021U",
|
||
|
"021C",
|
||
|
"111D",
|
||
|
"111U",
|
||
|
"030T",
|
||
|
"030C",
|
||
|
"201",
|
||
|
"120D",
|
||
|
"120U",
|
||
|
"120C",
|
||
|
"210",
|
||
|
"300",
|
||
|
)
|
||
|
|
||
|
|
||
|
#: A dictionary mapping triad code to triad name.
|
||
|
TRICODE_TO_NAME = {i: TRIAD_NAMES[code - 1] for i, code in enumerate(TRICODES)}
|
||
|
|
||
|
|
||
|
def _tricode(G, v, u, w):
|
||
|
"""Returns the integer code of the given triad.
|
||
|
|
||
|
This is some fancy magic that comes from Batagelj and Mrvar's paper. It
|
||
|
treats each edge joining a pair of `v`, `u`, and `w` as a bit in
|
||
|
the binary representation of an integer.
|
||
|
|
||
|
"""
|
||
|
combos = ((v, u, 1), (u, v, 2), (v, w, 4), (w, v, 8), (u, w, 16), (w, u, 32))
|
||
|
return sum(x for u, v, x in combos if v in G[u])
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
def triadic_census(G, nodelist=None):
|
||
|
"""Determines the triadic census of a directed graph.
|
||
|
|
||
|
The triadic census is a count of how many of the 16 possible types of
|
||
|
triads are present in a directed graph. If a list of nodes is passed, then
|
||
|
only those triads are taken into account which have elements of nodelist in them.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
nodelist : list
|
||
|
List of nodes for which you want to calculate triadic census
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
census : dict
|
||
|
Dictionary with triad type as keys and number of occurrences as values.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This algorithm has complexity $O(m)$ where $m$ is the number of edges in
|
||
|
the graph.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
triad_graph
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census
|
||
|
algorithm for large sparse networks with small maximum degree,
|
||
|
University of Ljubljana,
|
||
|
http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf
|
||
|
|
||
|
"""
|
||
|
# Initialize the count for each triad to be zero.
|
||
|
census = {name: 0 for name in TRIAD_NAMES}
|
||
|
n = len(G)
|
||
|
# m = dict(zip(G, range(n)))
|
||
|
m = {v: i for i, v in enumerate(G)}
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G.nodes())
|
||
|
for v in nodelist:
|
||
|
vnbrs = set(G.pred[v]) | set(G.succ[v])
|
||
|
for u in vnbrs:
|
||
|
if m[u] <= m[v]:
|
||
|
continue
|
||
|
neighbors = (vnbrs | set(G.succ[u]) | set(G.pred[u])) - {u, v}
|
||
|
# Calculate dyadic triads instead of counting them.
|
||
|
if v in G[u] and u in G[v]:
|
||
|
census["102"] += n - len(neighbors) - 2
|
||
|
else:
|
||
|
census["012"] += n - len(neighbors) - 2
|
||
|
# Count connected triads.
|
||
|
for w in neighbors:
|
||
|
if m[u] < m[w] or (
|
||
|
m[v] < m[w] < m[u] and v not in G.pred[w] and v not in G.succ[w]
|
||
|
):
|
||
|
code = _tricode(G, v, u, w)
|
||
|
census[TRICODE_TO_NAME[code]] += 1
|
||
|
|
||
|
if len(nodelist) != len(G):
|
||
|
census["003"] = 0
|
||
|
for v in nodelist:
|
||
|
vnbrs = set(G.pred[v]) | set(G.succ[v])
|
||
|
not_vnbrs = G.nodes() - vnbrs - set(v)
|
||
|
triad_003_count = 0
|
||
|
for u in not_vnbrs:
|
||
|
unbrs = set(set(G.succ[u]) | set(G.pred[u])) - vnbrs
|
||
|
triad_003_count += len(not_vnbrs - unbrs) - 1
|
||
|
triad_003_count //= 2
|
||
|
census["003"] += triad_003_count
|
||
|
else:
|
||
|
# null triads = total number of possible triads - all found triads
|
||
|
#
|
||
|
# Use integer division here, since we know this formula guarantees an
|
||
|
# integral value.
|
||
|
census["003"] = ((n * (n - 1) * (n - 2)) // 6) - sum(census.values())
|
||
|
return census
|
||
|
|
||
|
|
||
|
def is_triad(G):
|
||
|
"""Returns True if the graph G is a triad, else False.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX Graph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
istriad : boolean
|
||
|
Whether G is a valid triad
|
||
|
"""
|
||
|
if isinstance(G, nx.Graph):
|
||
|
if G.order() == 3 and nx.is_directed(G):
|
||
|
if not any((n, n) in G.edges() for n in G.nodes()):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
def all_triplets(G):
|
||
|
"""Returns a generator of all possible sets of 3 nodes in a DiGraph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
triplets : generator of 3-tuples
|
||
|
Generator of tuples of 3 nodes
|
||
|
"""
|
||
|
triplets = combinations(G.nodes(), 3)
|
||
|
return triplets
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
def all_triads(G):
|
||
|
"""A generator of all possible triads in G.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
all_triads : generator of DiGraphs
|
||
|
Generator of triads (order-3 DiGraphs)
|
||
|
"""
|
||
|
triplets = combinations(G.nodes(), 3)
|
||
|
for triplet in triplets:
|
||
|
yield G.subgraph(triplet).copy()
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
def triads_by_type(G):
|
||
|
"""Returns a list of all triads for each triad type in a directed graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tri_by_type : dict
|
||
|
Dictionary with triad types as keys and lists of triads as values.
|
||
|
"""
|
||
|
# num_triads = o * (o - 1) * (o - 2) // 6
|
||
|
# if num_triads > TRIAD_LIMIT: print(WARNING)
|
||
|
all_tri = all_triads(G)
|
||
|
tri_by_type = defaultdict(list)
|
||
|
for triad in all_tri:
|
||
|
name = triad_type(triad)
|
||
|
tri_by_type[name].append(triad)
|
||
|
return tri_by_type
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
def triad_type(G):
|
||
|
"""Returns the sociological triad type for a triad.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph with 3 nodes
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
triad_type : str
|
||
|
A string identifying the triad type
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
There can be 6 unique edges in a triad (order-3 DiGraph) (so 2^^6=64 unique
|
||
|
triads given 3 nodes). These 64 triads each display exactly 1 of 16
|
||
|
topologies of triads (topologies can be permuted). These topologies are
|
||
|
identified by the following notation:
|
||
|
|
||
|
{m}{a}{n}{type} (for example: 111D, 210, 102)
|
||
|
|
||
|
Here:
|
||
|
|
||
|
{m} = number of mutual ties (takes 0, 1, 2, 3); a mutual tie is (0,1)
|
||
|
AND (1,0)
|
||
|
{a} = number of assymmetric ties (takes 0, 1, 2, 3); an assymmetric tie
|
||
|
is (0,1) BUT NOT (1,0) or vice versa
|
||
|
{n} = number of null ties (takes 0, 1, 2, 3); a null tie is NEITHER
|
||
|
(0,1) NOR (1,0)
|
||
|
{type} = a letter (takes U, D, C, T) corresponding to up, down, cyclical
|
||
|
and transitive. This is only used for topologies that can have
|
||
|
more than one form (eg: 021D and 021U).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Snijders, T. (2012). "Transitivity and triads." University of
|
||
|
Oxford.
|
||
|
https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf
|
||
|
"""
|
||
|
if not is_triad(G):
|
||
|
raise nx.NetworkXAlgorithmError("G is not a triad (order-3 DiGraph)")
|
||
|
num_edges = len(G.edges())
|
||
|
if num_edges == 0:
|
||
|
return "003"
|
||
|
elif num_edges == 1:
|
||
|
return "012"
|
||
|
elif num_edges == 2:
|
||
|
e1, e2 = G.edges()
|
||
|
if set(e1) == set(e2):
|
||
|
return "102"
|
||
|
elif e1[0] == e2[0]:
|
||
|
return "021D"
|
||
|
elif e1[1] == e2[1]:
|
||
|
return "021U"
|
||
|
elif e1[1] == e2[0] or e2[1] == e1[0]:
|
||
|
return "021C"
|
||
|
elif num_edges == 3:
|
||
|
for (e1, e2, e3) in permutations(G.edges(), 3):
|
||
|
if set(e1) == set(e2):
|
||
|
if e3[0] in e1:
|
||
|
return "111U"
|
||
|
# e3[1] in e1:
|
||
|
return "111D"
|
||
|
elif set(e1).symmetric_difference(set(e2)) == set(e3):
|
||
|
if {e1[0], e2[0], e3[0]} == {e1[0], e2[0], e3[0]} == set(G.nodes()):
|
||
|
return "030C"
|
||
|
# e3 == (e1[0], e2[1]) and e2 == (e1[1], e3[1]):
|
||
|
return "030T"
|
||
|
elif num_edges == 4:
|
||
|
for (e1, e2, e3, e4) in permutations(G.edges(), 4):
|
||
|
if set(e1) == set(e2):
|
||
|
# identify pair of symmetric edges (which necessarily exists)
|
||
|
if set(e3) == set(e4):
|
||
|
return "201"
|
||
|
if {e3[0]} == {e4[0]} == set(e3).intersection(set(e4)):
|
||
|
return "120D"
|
||
|
if {e3[1]} == {e4[1]} == set(e3).intersection(set(e4)):
|
||
|
return "120U"
|
||
|
if e3[1] == e4[0]:
|
||
|
return "120C"
|
||
|
elif num_edges == 5:
|
||
|
return "210"
|
||
|
elif num_edges == 6:
|
||
|
return "300"
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
def random_triad(G):
|
||
|
"""Returns a random triad from a directed graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
G2 : subgraph
|
||
|
A randomly selected triad (order-3 NetworkX DiGraph)
|
||
|
"""
|
||
|
nodes = sample(list(G.nodes()), 3)
|
||
|
G2 = G.subgraph(nodes)
|
||
|
return G2
|
||
|
|
||
|
|
||
|
"""
|
||
|
@not_implemented_for('undirected')
|
||
|
def triadic_closures(G):
|
||
|
'''Returns a list of order-3 subgraphs of G that are triadic closures.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
closures : list
|
||
|
List of triads of G that are triadic closures
|
||
|
'''
|
||
|
pass
|
||
|
|
||
|
|
||
|
@not_implemented_for('undirected')
|
||
|
def focal_closures(G, attr_name):
|
||
|
'''Returns a list of order-3 subgraphs of G that are focally closed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
attr_name : str
|
||
|
An attribute name
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
closures : list
|
||
|
List of triads of G that are focally closed on attr_name
|
||
|
'''
|
||
|
pass
|
||
|
|
||
|
|
||
|
@not_implemented_for('undirected')
|
||
|
def balanced_triads(G, crit_func):
|
||
|
'''Returns a list of order-3 subgraphs of G that are stable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : digraph
|
||
|
A NetworkX DiGraph
|
||
|
crit_func : function
|
||
|
A function that determines if a triad (order-3 digraph) is stable
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
triads : list
|
||
|
List of triads in G that are stable
|
||
|
'''
|
||
|
pass
|
||
|
"""
|