990 lines
33 KiB
Python
990 lines
33 KiB
Python
|
import functools
|
||
|
from typing import (
|
||
|
Optional,
|
||
|
Type,
|
||
|
Union,
|
||
|
Any,
|
||
|
Dict,
|
||
|
cast,
|
||
|
Tuple,
|
||
|
List,
|
||
|
TypeVar,
|
||
|
get_type_hints,
|
||
|
Callable,
|
||
|
Generic,
|
||
|
Hashable,
|
||
|
ClassVar,
|
||
|
)
|
||
|
import re
|
||
|
from datetime import datetime
|
||
|
from dataclasses import fields, is_dataclass, Field, MISSING, dataclass, asdict
|
||
|
from uuid import UUID
|
||
|
from enum import Enum
|
||
|
import threading
|
||
|
import warnings
|
||
|
|
||
|
from dateutil.parser import parse
|
||
|
import jsonschema
|
||
|
|
||
|
JSON_ENCODABLE_TYPES = {
|
||
|
str: {"type": "string"},
|
||
|
int: {"type": "integer"},
|
||
|
bool: {"type": "boolean"},
|
||
|
float: {"type": "number"},
|
||
|
type(None): {"type": "null"},
|
||
|
}
|
||
|
|
||
|
JsonEncodable = Union[int, float, str, bool, None]
|
||
|
JsonDict = Dict[str, Any]
|
||
|
|
||
|
OPTIONAL_TYPES = ["Union", "Optional"]
|
||
|
|
||
|
|
||
|
class ValidationError(jsonschema.ValidationError):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class FutureValidationError(ValidationError):
|
||
|
# a validation error where we haven't called str() on inputs yet.
|
||
|
def __init__(self, field: str, errors: Dict[str, Exception]):
|
||
|
self.errors = errors
|
||
|
self.field = field
|
||
|
super().__init__("generic validation error")
|
||
|
self.initialized = False
|
||
|
|
||
|
def late_initialize(self):
|
||
|
lines: List[str] = []
|
||
|
for name, exc in self.errors.items():
|
||
|
# do not use getattr(exc, 'message', str(exc)), it's slow!
|
||
|
if hasattr(exc, "message"):
|
||
|
msg = exc.message
|
||
|
else:
|
||
|
msg = str(exc)
|
||
|
lines.append(f"{name}: {msg}")
|
||
|
|
||
|
super().__init__(
|
||
|
"Unable to decode value for '{}: No members matched:\n{}".format(
|
||
|
self.field, lines
|
||
|
)
|
||
|
)
|
||
|
self.initialized = True
|
||
|
|
||
|
def __str__(self):
|
||
|
if not self.initialized:
|
||
|
self.late_initialize()
|
||
|
return super().__str__()
|
||
|
|
||
|
|
||
|
def is_enum(field_type: Any) -> bool:
|
||
|
return issubclass_safe(field_type, Enum)
|
||
|
|
||
|
|
||
|
def issubclass_safe(klass: Any, base: Type) -> bool:
|
||
|
try:
|
||
|
return issubclass(klass, base)
|
||
|
except TypeError:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_optional(field: Any) -> bool:
|
||
|
if str(field).startswith("typing.Union") or str(field).startswith(
|
||
|
"typing.Optional"
|
||
|
):
|
||
|
for arg in field.__args__:
|
||
|
if isinstance(arg, type) and issubclass(arg, type(None)):
|
||
|
return True
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
TV = TypeVar("TV")
|
||
|
|
||
|
|
||
|
class FieldEncoder(Generic[TV]):
|
||
|
"""Base class for encoding fields to and from JSON encodable values"""
|
||
|
|
||
|
def to_wire(self, value: TV) -> JsonEncodable:
|
||
|
return value # type: ignore
|
||
|
|
||
|
def to_python(self, value: JsonEncodable) -> TV:
|
||
|
return value # type: ignore
|
||
|
|
||
|
@property
|
||
|
def json_schema(self) -> JsonDict:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
|
class DateTimeFieldEncoder(FieldEncoder[datetime]):
|
||
|
"""Encodes datetimes to RFC3339 format"""
|
||
|
|
||
|
def to_wire(self, value: datetime) -> str:
|
||
|
out = value.isoformat()
|
||
|
|
||
|
# Assume UTC if timezone is missing
|
||
|
if value.tzinfo is None:
|
||
|
return out + "Z"
|
||
|
return out
|
||
|
|
||
|
def to_python(self, value: JsonEncodable) -> datetime:
|
||
|
return (
|
||
|
value if isinstance(value, datetime) else parse(cast(str, value))
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def json_schema(self) -> JsonDict:
|
||
|
return {"type": "string", "format": "date-time"}
|
||
|
|
||
|
|
||
|
class UuidField(FieldEncoder[UUID]):
|
||
|
def to_wire(self, value: UUID) -> str:
|
||
|
return str(value)
|
||
|
|
||
|
def to_python(self, value) -> UUID:
|
||
|
return UUID(value)
|
||
|
|
||
|
@property
|
||
|
def json_schema(self) -> JsonDict:
|
||
|
# 'format': 'uuid' is not valid in "real" JSONSchema
|
||
|
return {
|
||
|
"type": "string",
|
||
|
"pattern": (
|
||
|
"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
|
||
|
),
|
||
|
}
|
||
|
|
||
|
|
||
|
_ValueEncoder = Callable[[Any, Any, bool], Any]
|
||
|
_ValueDecoder = Callable[[str, Any, Any], Any]
|
||
|
|
||
|
T = TypeVar("T", bound="JsonSchemaMixin")
|
||
|
|
||
|
|
||
|
@functools.lru_cache()
|
||
|
def _to_camel_case(value: str) -> str:
|
||
|
if "_" in value:
|
||
|
parts = value.split("_")
|
||
|
return "".join(
|
||
|
[parts[0]] + [part[0].upper() + part[1:] for part in parts[1:]]
|
||
|
)
|
||
|
else:
|
||
|
return value
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FieldMeta:
|
||
|
default: Any = None
|
||
|
description: Optional[str] = None
|
||
|
|
||
|
@property
|
||
|
def as_dict(self) -> Dict:
|
||
|
return {
|
||
|
_to_camel_case(k): v
|
||
|
for k, v in asdict(self).items()
|
||
|
if v is not None
|
||
|
}
|
||
|
|
||
|
|
||
|
@functools.lru_cache()
|
||
|
def _validate_schema(h_schema_cls: Hashable) -> JsonDict:
|
||
|
schema_cls = cast(Type[JsonSchemaMixin], h_schema_cls) # making mypy happy
|
||
|
schema = schema_cls.json_schema()
|
||
|
jsonschema.Draft7Validator.check_schema(schema)
|
||
|
return schema
|
||
|
|
||
|
|
||
|
# a restriction is a list of Field, str pairs
|
||
|
Restriction = List[Tuple[Field, str]]
|
||
|
# a restricted variant is a pair of an object that has fields with restrictions
|
||
|
# and those restrictions. Only JsonSchemaMixin subclasses may have restrictied
|
||
|
# fields.
|
||
|
Variant = Tuple[Type[T], Optional[Restriction]]
|
||
|
|
||
|
|
||
|
def _get_restrictions(variant_type: Type) -> Restriction:
|
||
|
"""Return a list of all restrictions on the given variant of a union, in
|
||
|
the form of a Field, name pair, where `name` is the field's name in json
|
||
|
and the Field is the dataclass-level field name.
|
||
|
|
||
|
If the variant isn't a JsonSchemaMixin subclass, there are no restrictions.
|
||
|
"""
|
||
|
if not issubclass_safe(variant_type, JsonSchemaMixin):
|
||
|
return []
|
||
|
restrictions: Restriction = []
|
||
|
for field, target_name in variant_type._get_fields():
|
||
|
if field.metadata and "restrict" in field.metadata:
|
||
|
restrictions.append((field, target_name))
|
||
|
return restrictions
|
||
|
|
||
|
|
||
|
def get_union_fields(field_type: Union[Any]) -> List[Variant]:
|
||
|
"""
|
||
|
Unions have a __args__ that is all their variants (after typing's
|
||
|
type-collapsing magic has run, so caveat emptor...)
|
||
|
|
||
|
JsonSchemaMixin dataclasses have `Field`s, returned by the `_get_fields`
|
||
|
method.
|
||
|
|
||
|
This method returns list of 2-tuples:
|
||
|
- the first value is always a type
|
||
|
- the second value is None if there are no restrictions, or a list of
|
||
|
restrictions if there are restrictions
|
||
|
|
||
|
The list will be sorted so that unrestricted variants will always be at the
|
||
|
end.
|
||
|
"""
|
||
|
fields: List[Variant] = []
|
||
|
for variant in field_type.__args__:
|
||
|
restrictions: Optional[Restriction] = _get_restrictions(variant)
|
||
|
if not restrictions:
|
||
|
restrictions = None
|
||
|
fields.append((variant, restrictions))
|
||
|
|
||
|
# put unrestricted variants last
|
||
|
fields.sort(key=lambda f: f[1] is None)
|
||
|
return fields
|
||
|
|
||
|
|
||
|
def _encode_restrictions_met(
|
||
|
value: Any, restrict_fields: Optional[List[Tuple[Field, str]]]
|
||
|
) -> bool:
|
||
|
if restrict_fields is None:
|
||
|
return True
|
||
|
return all(
|
||
|
(
|
||
|
hasattr(value, f.name)
|
||
|
and getattr(value, f.name) in f.metadata["restrict"]
|
||
|
)
|
||
|
for f, _ in restrict_fields
|
||
|
)
|
||
|
|
||
|
|
||
|
def _decode_restrictions_met(
|
||
|
value: Any, restrict_fields: Optional[List[Tuple[Field, str]]]
|
||
|
) -> bool:
|
||
|
if restrict_fields is None:
|
||
|
return True
|
||
|
return all(
|
||
|
n in value and value[n] in f.metadata["restrict"]
|
||
|
for f, n in restrict_fields
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CompleteSchema:
|
||
|
schema: JsonDict
|
||
|
definitions: JsonDict
|
||
|
|
||
|
|
||
|
_HOLOGRAM_LOCK = threading.RLock()
|
||
|
|
||
|
|
||
|
class JsonSchemaMixin:
|
||
|
"""Mixin which adds methods to generate a JSON schema and
|
||
|
convert to and from JSON encodable dicts with validation against the schema
|
||
|
"""
|
||
|
|
||
|
_field_encoders: ClassVar[Dict[Type, FieldEncoder]] = {
|
||
|
datetime: DateTimeFieldEncoder(),
|
||
|
UUID: UuidField(),
|
||
|
}
|
||
|
|
||
|
# Cache of the generated schema
|
||
|
_schema: ClassVar[Optional[Dict[str, CompleteSchema]]] = None
|
||
|
|
||
|
# Cache of field encode / decode functions
|
||
|
_encode_cache: ClassVar[Optional[Dict[Any, _ValueEncoder]]] = None
|
||
|
_decode_cache: ClassVar[Optional[Dict[Any, _ValueDecoder]]] = None
|
||
|
_mapped_fields: ClassVar[
|
||
|
Optional[Dict[Any, List[Tuple[Field, str]]]]
|
||
|
] = None
|
||
|
|
||
|
ADDITIONAL_PROPERTIES: ClassVar[bool] = False
|
||
|
|
||
|
@classmethod
|
||
|
def field_mapping(cls) -> Dict[str, str]:
|
||
|
"""Defines the mapping of python field names to JSON field names.
|
||
|
|
||
|
The main use-case is to allow JSON field names which are Python keywords
|
||
|
"""
|
||
|
return {}
|
||
|
|
||
|
@classmethod
|
||
|
def register_field_encoders(cls, field_encoders: Dict[Type, FieldEncoder]):
|
||
|
"""Registers additional custom field encoders. If called on the base, these are added globally.
|
||
|
|
||
|
The DateTimeFieldEncoder is included by default.
|
||
|
"""
|
||
|
if cls is not JsonSchemaMixin:
|
||
|
cls._field_encoders = {**cls._field_encoders, **field_encoders}
|
||
|
else:
|
||
|
cls._field_encoders.update(field_encoders)
|
||
|
|
||
|
def _local_to_dict(self, **kwargs):
|
||
|
return self.to_dict(**kwargs)
|
||
|
|
||
|
@classmethod
|
||
|
def _encode_field(
|
||
|
cls, field_type: Any, value: Any, omit_none: bool
|
||
|
) -> Any:
|
||
|
if value is None:
|
||
|
return value
|
||
|
try:
|
||
|
encoder = cls._encode_cache[field_type] # type: ignore
|
||
|
except (KeyError, TypeError):
|
||
|
if cls._encode_cache is None:
|
||
|
cls._encode_cache = {}
|
||
|
|
||
|
field_type_name = cls._get_field_type_name(field_type)
|
||
|
if field_type in cls._field_encoders:
|
||
|
|
||
|
def encoder(ft, v, __):
|
||
|
return cls._field_encoders[ft].to_wire(v)
|
||
|
|
||
|
elif is_enum(field_type):
|
||
|
|
||
|
def encoder(_, v, __):
|
||
|
return v.value
|
||
|
|
||
|
elif field_type_name in OPTIONAL_TYPES:
|
||
|
# Attempt to encode the field with each union variant.
|
||
|
# TODO: Find a more reliable method than this since in the case 'Union[List[str], Dict[str, int]]' this
|
||
|
# will just output the dict keys as a list
|
||
|
union_fields = get_union_fields(field_type)
|
||
|
for variant, restrict_fields in union_fields:
|
||
|
if _encode_restrictions_met(value, restrict_fields):
|
||
|
try:
|
||
|
encoded = cls._encode_field(
|
||
|
variant, value, omit_none
|
||
|
)
|
||
|
break
|
||
|
except (TypeError, AttributeError):
|
||
|
continue
|
||
|
|
||
|
if encoded is None:
|
||
|
raise TypeError(
|
||
|
"No variant of '{}' matched the type '{}'".format(
|
||
|
field_type, type(value)
|
||
|
)
|
||
|
)
|
||
|
return encoded
|
||
|
elif field_type_name in ("Mapping", "Dict"):
|
||
|
|
||
|
def encoder(ft, val, o):
|
||
|
return {
|
||
|
cls._encode_field(
|
||
|
ft.__args__[0], k, o
|
||
|
): cls._encode_field(ft.__args__[1], v, o)
|
||
|
for k, v in val.items()
|
||
|
}
|
||
|
|
||
|
elif field_type_name == "PatternProperty":
|
||
|
# TODO: is there some way to set __args__ on this so it can
|
||
|
# just re-use Dict/Mapping?
|
||
|
def encoder(ft, val, o):
|
||
|
|
||
|
return {
|
||
|
cls._encode_field(str, k, o): cls._encode_field(
|
||
|
ft.TARGET_TYPE, v, o
|
||
|
)
|
||
|
for k, v in val.items()
|
||
|
}
|
||
|
|
||
|
elif field_type_name == "List" or (
|
||
|
field_type_name == "Tuple" and ... in field_type.__args__
|
||
|
):
|
||
|
|
||
|
def encoder(ft, val, o):
|
||
|
if not isinstance(val, (tuple, list)):
|
||
|
valtype = type(val)
|
||
|
# raise a TypeError so the union encoder will capture it
|
||
|
raise TypeError(
|
||
|
f"Invalid type, expected {field_type_name} but got {valtype}"
|
||
|
)
|
||
|
return [
|
||
|
cls._encode_field(ft.__args__[0], v, o) for v in val
|
||
|
]
|
||
|
|
||
|
elif field_type_name == "Sequence":
|
||
|
|
||
|
def encoder(ft, val, o):
|
||
|
return [
|
||
|
cls._encode_field(ft.__args__[0], v, o) for v in val
|
||
|
]
|
||
|
|
||
|
elif field_type_name == "Tuple":
|
||
|
|
||
|
def encoder(ft, val, o):
|
||
|
return [
|
||
|
cls._encode_field(ft.__args__[idx], v, o)
|
||
|
for idx, v in enumerate(val)
|
||
|
]
|
||
|
|
||
|
elif cls._is_json_schema_subclass(field_type):
|
||
|
# Only need to validate at the top level
|
||
|
def encoder(_, v, o):
|
||
|
# this calls _local_to_dict in order to support
|
||
|
# combining this code with mashumaro
|
||
|
return v._local_to_dict(omit_none=o)
|
||
|
|
||
|
elif hasattr(field_type, "__supertype__"): # NewType field
|
||
|
|
||
|
def encoder(ft, v, o):
|
||
|
return cls._encode_field(ft.__supertype__, v, o)
|
||
|
|
||
|
else:
|
||
|
|
||
|
def encoder(_, v, __):
|
||
|
return v
|
||
|
|
||
|
cls._encode_cache[field_type] = encoder # type: ignore
|
||
|
return encoder(field_type, value, omit_none)
|
||
|
|
||
|
@classmethod
|
||
|
def _get_fields(cls) -> List[Tuple[Field, str]]:
|
||
|
if cls._mapped_fields is None:
|
||
|
cls._mapped_fields = {}
|
||
|
if cls.__name__ not in cls._mapped_fields:
|
||
|
mapped_fields = []
|
||
|
type_hints = get_type_hints(cls)
|
||
|
|
||
|
for f in fields(cls):
|
||
|
# Skip internal fields
|
||
|
if f.name.startswith("_"):
|
||
|
continue
|
||
|
|
||
|
# Note fields() doesn't resolve forward refs
|
||
|
f.type = type_hints[f.name]
|
||
|
|
||
|
mapped_fields.append(
|
||
|
(f, cls.field_mapping().get(f.name, f.name))
|
||
|
)
|
||
|
cls._mapped_fields[cls.__name__] = mapped_fields
|
||
|
return cls._mapped_fields[cls.__name__]
|
||
|
|
||
|
@classmethod
|
||
|
def _get_field_names(cls):
|
||
|
fields = cls._get_fields()
|
||
|
field_names = []
|
||
|
for element in fields:
|
||
|
field_names.append(element[1])
|
||
|
return field_names
|
||
|
|
||
|
def to_dict(
|
||
|
self, omit_none: bool = True, validate: bool = False
|
||
|
) -> JsonDict:
|
||
|
"""Converts the dataclass instance to a JSON encodable dict, with optional JSON schema validation.
|
||
|
|
||
|
If omit_none (default True) is specified, any items with value None are removed
|
||
|
"""
|
||
|
data = {}
|
||
|
for field, target_field in self._get_fields():
|
||
|
value = self._encode_field(
|
||
|
field.type, getattr(self, field.name), omit_none
|
||
|
)
|
||
|
if omit_none and value is None:
|
||
|
continue
|
||
|
data[target_field] = value
|
||
|
if validate:
|
||
|
self.validate(data)
|
||
|
return data
|
||
|
|
||
|
@classmethod
|
||
|
def _decode_field(
|
||
|
cls, field: str, field_type: Any, value: Any, validate: bool
|
||
|
) -> Any:
|
||
|
if value is None:
|
||
|
return None
|
||
|
decoder = None
|
||
|
try:
|
||
|
decoder = cls._decode_cache[field_type] # type: ignore
|
||
|
except (KeyError, TypeError):
|
||
|
if (
|
||
|
type(value) in JSON_ENCODABLE_TYPES
|
||
|
and field_type in JSON_ENCODABLE_TYPES
|
||
|
):
|
||
|
return value
|
||
|
if cls._decode_cache is None:
|
||
|
cls._decode_cache = {}
|
||
|
# Replace any nested dictionaries with their targets
|
||
|
field_type_name = cls._get_field_type_name(field_type)
|
||
|
|
||
|
if field_type in cls._field_encoders:
|
||
|
|
||
|
def decoder(_, ft, val):
|
||
|
return cls._field_encoders[ft].to_python(val)
|
||
|
|
||
|
elif cls._is_json_schema_subclass(field_type):
|
||
|
|
||
|
def decoder(_, ft, val):
|
||
|
return ft.from_dict(val, validate=validate)
|
||
|
|
||
|
elif field_type_name in OPTIONAL_TYPES:
|
||
|
# Attempt to decode the value using each decoder in turn
|
||
|
union_excs = (
|
||
|
AttributeError,
|
||
|
TypeError,
|
||
|
ValueError,
|
||
|
ValidationError,
|
||
|
)
|
||
|
errors: Dict[str, Exception] = {}
|
||
|
|
||
|
union_fields = get_union_fields(field_type)
|
||
|
for variant, restrict_fields in union_fields:
|
||
|
if _decode_restrictions_met(value, restrict_fields):
|
||
|
try:
|
||
|
return cls._decode_field(
|
||
|
field, variant, value, True
|
||
|
)
|
||
|
except union_excs as exc:
|
||
|
errors[str(variant)] = exc
|
||
|
continue
|
||
|
|
||
|
# none of the unions decoded, so report about all of them
|
||
|
raise FutureValidationError(field, errors)
|
||
|
|
||
|
elif field_type_name in ("Mapping", "Dict"):
|
||
|
|
||
|
def decoder(f, ft, val):
|
||
|
return {
|
||
|
cls._decode_field(
|
||
|
f, ft.__args__[0], k, validate
|
||
|
): cls._decode_field(f, ft.__args__[1], v, validate)
|
||
|
for k, v in val.items()
|
||
|
}
|
||
|
|
||
|
elif field_type_name == "List" or (
|
||
|
field_type_name == "Tuple" and ... in field_type.__args__
|
||
|
):
|
||
|
seq_type = tuple if field_type_name == "Tuple" else list
|
||
|
|
||
|
def decoder(f, ft, val):
|
||
|
if not isinstance(val, (tuple, list)):
|
||
|
valtype = type(val)
|
||
|
# raise a TypeError so the Union decoder will capture it
|
||
|
raise TypeError(
|
||
|
f"Invalid type, expected {field_type_name} but got {valtype}"
|
||
|
)
|
||
|
return seq_type(
|
||
|
cls._decode_field(f, ft.__args__[0], v, validate)
|
||
|
for v in val
|
||
|
)
|
||
|
|
||
|
# if you want to allow strings as sequences for some reason, you
|
||
|
# can still use 'Sequence' to get back a list of characters...
|
||
|
elif field_type_name == "Sequence":
|
||
|
|
||
|
def decoder(f, ft, val):
|
||
|
return list(
|
||
|
cls._decode_field(f, ft.__args__[0], v, validate)
|
||
|
for v in val
|
||
|
)
|
||
|
|
||
|
elif field_type_name == "Tuple":
|
||
|
|
||
|
def decoder(f, ft, val):
|
||
|
return tuple(
|
||
|
cls._decode_field(f, ft.__args__[idx], v, validate)
|
||
|
for idx, v in enumerate(val)
|
||
|
)
|
||
|
|
||
|
elif hasattr(field_type, "__supertype__"): # NewType field
|
||
|
|
||
|
def decoder(f, ft, val):
|
||
|
return cls._decode_field(
|
||
|
f, ft.__supertype__, val, validate
|
||
|
)
|
||
|
|
||
|
elif is_enum(field_type):
|
||
|
|
||
|
def decoder(_, ft, val):
|
||
|
return ft(val)
|
||
|
|
||
|
elif field_type is Any:
|
||
|
|
||
|
def decoder(_, __, val):
|
||
|
return val
|
||
|
|
||
|
if decoder is None:
|
||
|
raise ValidationError(
|
||
|
f"Unable to decode value for '{field}: {field_type_name}' (value={value})"
|
||
|
)
|
||
|
return value
|
||
|
cls._decode_cache[field_type] = decoder
|
||
|
return decoder(field, field_type, value)
|
||
|
|
||
|
@classmethod
|
||
|
def _find_matching_validator(cls: Type[T], data: JsonDict) -> T:
|
||
|
if cls is not JsonSchemaMixin:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
decoded = None
|
||
|
|
||
|
for subclass in cls.__subclasses__():
|
||
|
try:
|
||
|
if is_dataclass(subclass):
|
||
|
return subclass.from_dict(data)
|
||
|
|
||
|
except ValidationError:
|
||
|
continue
|
||
|
|
||
|
if decoded is None:
|
||
|
raise ValidationError("No matching validator for data.")
|
||
|
|
||
|
return decoded
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls: Type[T], data: JsonDict, validate=True) -> T:
|
||
|
"""Returns a dataclass instance with all nested classes converted from the dict given"""
|
||
|
if cls is JsonSchemaMixin:
|
||
|
return cls._find_matching_validator(data)
|
||
|
|
||
|
init_values: Dict[str, Any] = {}
|
||
|
non_init_values: Dict[str, Any] = {}
|
||
|
|
||
|
if validate:
|
||
|
cls.validate(data)
|
||
|
|
||
|
for field, target_field in cls._get_fields():
|
||
|
values = init_values if field.init else non_init_values
|
||
|
if target_field in data or (
|
||
|
field.default == MISSING
|
||
|
and field.default_factory == MISSING # type: ignore
|
||
|
):
|
||
|
values[field.name] = cls._decode_field(
|
||
|
field.name, field.type, data.get(target_field), validate
|
||
|
)
|
||
|
|
||
|
# Need to ignore the type error here, since mypy doesn't know that
|
||
|
# subclasses are dataclasses
|
||
|
instance = cls(**init_values) # type: ignore
|
||
|
|
||
|
for field_name, value in non_init_values.items():
|
||
|
setattr(instance, field_name, value)
|
||
|
|
||
|
return instance
|
||
|
|
||
|
@staticmethod
|
||
|
def _is_json_schema_subclass(field_type: Type) -> bool:
|
||
|
return issubclass_safe(field_type, JsonSchemaMixin)
|
||
|
|
||
|
@staticmethod
|
||
|
def _has_definition(field_type: Type) -> bool:
|
||
|
return (
|
||
|
issubclass_safe(field_type, JsonSchemaMixin)
|
||
|
and field_type.__name__ != "PatternProperty"
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def _get_field_meta(cls, field: Field) -> Tuple[FieldMeta, bool]:
|
||
|
required = True
|
||
|
field_meta = FieldMeta()
|
||
|
default_value: Optional[Callable[[], Any]] = None
|
||
|
if field.default is not MISSING and field.default is not None:
|
||
|
# In case of default value given
|
||
|
default_value = field.default
|
||
|
elif (
|
||
|
field.default_factory is not MISSING # type: ignore
|
||
|
and field.default_factory is not None # type: ignore
|
||
|
): # type: ignore
|
||
|
# In case of a default factory given, we call it
|
||
|
default_value = field.default_factory() # type: ignore
|
||
|
|
||
|
if default_value is not None:
|
||
|
field_meta.default = cls._encode_field(
|
||
|
field.type, default_value, omit_none=False
|
||
|
)
|
||
|
required = False
|
||
|
|
||
|
if field.metadata is not None:
|
||
|
if "description" in field.metadata:
|
||
|
field_meta.description = field.metadata["description"]
|
||
|
|
||
|
return field_meta, required
|
||
|
|
||
|
@classmethod
|
||
|
def _encode_restrictions(
|
||
|
cls, restrictions: Union[List[Any], Type[Enum]]
|
||
|
) -> JsonDict:
|
||
|
field_schema: JsonDict = {}
|
||
|
member_types = set()
|
||
|
values = []
|
||
|
for member in restrictions:
|
||
|
if isinstance(member, Enum):
|
||
|
value = member.value
|
||
|
else:
|
||
|
value = member
|
||
|
member_types.add(type(value))
|
||
|
values.append(value)
|
||
|
if len(member_types) == 1:
|
||
|
member_type = member_types.pop()
|
||
|
if member_type in JSON_ENCODABLE_TYPES:
|
||
|
field_schema.update(JSON_ENCODABLE_TYPES[member_type])
|
||
|
else:
|
||
|
field_schema.update(
|
||
|
cls._field_encoders[member_type].json_schema
|
||
|
)
|
||
|
else:
|
||
|
# hologram used to silently do nothing here, which seems worse
|
||
|
raise ValidationError(
|
||
|
"Invalid schema defined: Found multiple member types - {!s}".format(
|
||
|
member_types
|
||
|
)
|
||
|
)
|
||
|
field_schema["enum"] = values
|
||
|
return field_schema
|
||
|
|
||
|
@classmethod
|
||
|
def _get_schema_for_type(
|
||
|
cls,
|
||
|
target: Type,
|
||
|
required: bool = True,
|
||
|
restrictions: Optional[List[Any]] = None,
|
||
|
) -> Tuple[JsonDict, bool]:
|
||
|
|
||
|
field_schema: JsonDict = {"type": "object"}
|
||
|
|
||
|
type_name = cls._get_field_type_name(target)
|
||
|
|
||
|
if target in cls._field_encoders:
|
||
|
field_schema.update(cls._field_encoders[target].json_schema)
|
||
|
|
||
|
elif restrictions:
|
||
|
field_schema.update(cls._encode_restrictions(restrictions))
|
||
|
|
||
|
# if Union[..., None] or Optional[...]
|
||
|
elif type_name in OPTIONAL_TYPES:
|
||
|
field_schema = {
|
||
|
"oneOf": [
|
||
|
cls._get_field_schema(variant)[0]
|
||
|
for variant in target.__args__
|
||
|
]
|
||
|
}
|
||
|
|
||
|
if is_optional(target):
|
||
|
required = False
|
||
|
|
||
|
elif is_enum(target):
|
||
|
field_schema.update(cls._encode_restrictions(target))
|
||
|
|
||
|
elif type_name in ("Dict", "Mapping"):
|
||
|
field_schema = {"type": "object"}
|
||
|
if target.__args__[1] is not Any:
|
||
|
field_schema["additionalProperties"] = cls._get_field_schema(
|
||
|
target.__args__[1]
|
||
|
)[0]
|
||
|
elif type_name == "PatternProperty":
|
||
|
field_schema = {"type": "object"}
|
||
|
field_schema["patternProperties"] = {
|
||
|
".*": cls._get_field_schema(target.TARGET_TYPE)[0]
|
||
|
}
|
||
|
|
||
|
elif type_name in ("Sequence", "List") or (
|
||
|
type_name == "Tuple" and ... in target.__args__
|
||
|
):
|
||
|
field_schema = {"type": "array"}
|
||
|
if target.__args__[0] is not Any:
|
||
|
field_schema["items"] = cls._get_field_schema(
|
||
|
target.__args__[0]
|
||
|
)[0]
|
||
|
|
||
|
elif type_name == "Tuple":
|
||
|
tuple_len = len(target.__args__)
|
||
|
# TODO: How do we handle Optional type within lists / tuples
|
||
|
field_schema = {
|
||
|
"type": "array",
|
||
|
"minItems": tuple_len,
|
||
|
"maxItems": tuple_len,
|
||
|
"items": [
|
||
|
cls._get_field_schema(type_arg)[0]
|
||
|
for type_arg in target.__args__
|
||
|
],
|
||
|
}
|
||
|
|
||
|
elif target in JSON_ENCODABLE_TYPES:
|
||
|
field_schema.update(JSON_ENCODABLE_TYPES[target])
|
||
|
|
||
|
elif hasattr(target, "__supertype__"): # NewType fields
|
||
|
field_schema, _ = cls._get_field_schema(target.__supertype__)
|
||
|
|
||
|
else:
|
||
|
raise ValidationError(f"Unable to create schema for '{type_name}'")
|
||
|
return field_schema, required
|
||
|
|
||
|
@classmethod
|
||
|
def _get_field_schema(
|
||
|
cls, field: Union[Field, Type]
|
||
|
) -> Tuple[JsonDict, bool]:
|
||
|
required = True
|
||
|
restrictions = None
|
||
|
|
||
|
if isinstance(field, Field):
|
||
|
field_type = field.type
|
||
|
field_meta, required = cls._get_field_meta(field)
|
||
|
if field.metadata is not None:
|
||
|
restrictions = field.metadata.get("restrict")
|
||
|
else:
|
||
|
field_type = field
|
||
|
field_meta = FieldMeta()
|
||
|
|
||
|
field_type_name = cls._get_field_type_name(field_type)
|
||
|
|
||
|
if cls._has_definition(field_type):
|
||
|
field_schema: JsonDict = {
|
||
|
"$ref": "#/definitions/{}".format(field_type_name)
|
||
|
}
|
||
|
else:
|
||
|
field_schema, required = cls._get_schema_for_type(
|
||
|
field_type, required=required, restrictions=restrictions
|
||
|
)
|
||
|
|
||
|
field_schema.update(field_meta.as_dict)
|
||
|
|
||
|
return field_schema, required
|
||
|
|
||
|
@classmethod
|
||
|
def _get_field_definitions(cls, field_type: Any, definitions: JsonDict):
|
||
|
field_type_name = cls._get_field_type_name(field_type)
|
||
|
if field_type_name == "Tuple":
|
||
|
# tuples are either like Tuple[T, ...] or Tuple[T1, T2, T3].
|
||
|
for member in field_type.__args__:
|
||
|
if member is not ...:
|
||
|
cls._get_field_definitions(member, definitions)
|
||
|
elif field_type_name in ("Sequence", "List"):
|
||
|
cls._get_field_definitions(field_type.__args__[0], definitions)
|
||
|
elif field_type_name in ("Dict", "Mapping"):
|
||
|
cls._get_field_definitions(field_type.__args__[1], definitions)
|
||
|
elif field_type_name == "PatternProperty":
|
||
|
cls._get_field_definitions(field_type.TARGET_TYPE, definitions)
|
||
|
elif field_type_name in OPTIONAL_TYPES:
|
||
|
for variant in field_type.__args__:
|
||
|
cls._get_field_definitions(variant, definitions)
|
||
|
elif cls._is_json_schema_subclass(field_type):
|
||
|
# Prevent recursion from forward refs & circular type dependencies
|
||
|
if field_type.__name__ not in definitions:
|
||
|
definitions[field_type.__name__] = None
|
||
|
definitions.update(
|
||
|
field_type._json_schema_recursive(
|
||
|
embeddable=True, definitions=definitions
|
||
|
)
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def all_json_schemas(cls) -> JsonDict:
|
||
|
"""Returns JSON schemas for all subclasses"""
|
||
|
definitions = {}
|
||
|
for subclass in cls.__subclasses__():
|
||
|
if is_dataclass(subclass):
|
||
|
definitions.update(subclass.json_schema(embeddable=True))
|
||
|
else:
|
||
|
definitions.update(subclass.all_json_schemas())
|
||
|
return definitions
|
||
|
|
||
|
@classmethod
|
||
|
def _collect_json_schema(cls, definitions: JsonDict) -> JsonDict:
|
||
|
"""Return the schema dictionary and update the definitions dictionary
|
||
|
for this class.
|
||
|
"""
|
||
|
properties = {}
|
||
|
required = []
|
||
|
for field, target_field in cls._get_fields():
|
||
|
properties[target_field], is_required = cls._get_field_schema(
|
||
|
field
|
||
|
)
|
||
|
cls._get_field_definitions(field.type, definitions)
|
||
|
if is_required:
|
||
|
required.append(target_field)
|
||
|
|
||
|
schema = {
|
||
|
"type": "object",
|
||
|
"required": required,
|
||
|
"properties": properties,
|
||
|
"additionalProperties": cls.ADDITIONAL_PROPERTIES,
|
||
|
}
|
||
|
if cls.__doc__:
|
||
|
schema["description"] = cls.__doc__
|
||
|
return schema
|
||
|
|
||
|
@classmethod
|
||
|
def _schema_defs_from_cache(cls, definitions: JsonDict) -> CompleteSchema:
|
||
|
# this has to be done at the classmethod level because each subclass
|
||
|
# needs its own dict, and we don't want to use metaclasses here (it
|
||
|
# makes it hard for users to use metaclasses)
|
||
|
if cls._schema is None:
|
||
|
with _HOLOGRAM_LOCK:
|
||
|
# check again, in case we were waiting for someone else to do
|
||
|
# this.
|
||
|
if cls._schema is None:
|
||
|
cls._schema = {}
|
||
|
|
||
|
if cls.__name__ in cls._schema:
|
||
|
return cls._schema[cls.__name__]
|
||
|
|
||
|
with _HOLOGRAM_LOCK:
|
||
|
if cls.__name__ in cls._schema:
|
||
|
return cls._schema[cls.__name__]
|
||
|
|
||
|
# ok, no schema found. go build schemas
|
||
|
schema = cls._collect_json_schema(definitions)
|
||
|
complete_schema = CompleteSchema(
|
||
|
schema=schema, definitions=definitions
|
||
|
)
|
||
|
# now that we finished, write our schema in. In the worst-case we write
|
||
|
# over another thread's work.
|
||
|
cls._schema[cls.__name__] = complete_schema
|
||
|
return complete_schema
|
||
|
|
||
|
@classmethod
|
||
|
def _json_schema_recursive(
|
||
|
cls, embeddable: bool, definitions: JsonDict
|
||
|
) -> JsonDict:
|
||
|
schema = cls._schema_defs_from_cache(definitions)
|
||
|
|
||
|
if embeddable:
|
||
|
return {**schema.definitions, cls.__name__: schema.schema}
|
||
|
|
||
|
return {
|
||
|
**schema.schema,
|
||
|
**{
|
||
|
"definitions": schema.definitions,
|
||
|
"$schema": "http://json-schema.org/draft-07/schema#",
|
||
|
},
|
||
|
}
|
||
|
|
||
|
@classmethod
|
||
|
def json_schema(cls, embeddable: bool = False) -> JsonDict:
|
||
|
"""Returns the JSON schema for the dataclass, along with the schema of any nested dataclasses
|
||
|
within the 'definitions' field.
|
||
|
|
||
|
Enable the embeddable flag to generate the schema in a format for embedding into other schemas
|
||
|
or documents supporting JSON schema such as Swagger specs.
|
||
|
"""
|
||
|
if cls is JsonSchemaMixin:
|
||
|
warnings.warn(
|
||
|
"Calling 'JsonSchemaMixin.json_schema' is deprecated. Use 'JsonSchemaMixin.all_json_schemas' instead",
|
||
|
DeprecationWarning,
|
||
|
)
|
||
|
return cls.all_json_schemas()
|
||
|
|
||
|
definitions: JsonDict = {}
|
||
|
return cls._json_schema_recursive(
|
||
|
embeddable=embeddable, definitions=definitions
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_field_type_name(field_type: Any) -> str:
|
||
|
try:
|
||
|
return field_type.__name__
|
||
|
except AttributeError:
|
||
|
# The types in the 'typing' module lack the __name__ attribute
|
||
|
match = re.match(r"typing\.([A-Za-z]+)", str(field_type))
|
||
|
return str(field_type) if match is None else match.group(1)
|
||
|
|
||
|
@classmethod
|
||
|
def validate(cls, data: Any):
|
||
|
h_cls = cast(Hashable, cls)
|
||
|
schema = _validate_schema(h_cls)
|
||
|
validator = jsonschema.Draft7Validator(schema)
|
||
|
error = next(iter(validator.iter_errors(data)), None)
|
||
|
if error is not None:
|
||
|
raise ValidationError.create_from(error) from error
|