dbt-selly/dbt-env/lib/python3.8/site-packages/hologram/__init__.py

990 lines
33 KiB
Python
Raw Normal View History

2022-03-22 15:13:27 +00:00
import functools
from typing import (
Optional,
Type,
Union,
Any,
Dict,
cast,
Tuple,
List,
TypeVar,
get_type_hints,
Callable,
Generic,
Hashable,
ClassVar,
)
import re
from datetime import datetime
from dataclasses import fields, is_dataclass, Field, MISSING, dataclass, asdict
from uuid import UUID
from enum import Enum
import threading
import warnings
from dateutil.parser import parse
import jsonschema
JSON_ENCODABLE_TYPES = {
str: {"type": "string"},
int: {"type": "integer"},
bool: {"type": "boolean"},
float: {"type": "number"},
type(None): {"type": "null"},
}
JsonEncodable = Union[int, float, str, bool, None]
JsonDict = Dict[str, Any]
OPTIONAL_TYPES = ["Union", "Optional"]
class ValidationError(jsonschema.ValidationError):
pass
class FutureValidationError(ValidationError):
# a validation error where we haven't called str() on inputs yet.
def __init__(self, field: str, errors: Dict[str, Exception]):
self.errors = errors
self.field = field
super().__init__("generic validation error")
self.initialized = False
def late_initialize(self):
lines: List[str] = []
for name, exc in self.errors.items():
# do not use getattr(exc, 'message', str(exc)), it's slow!
if hasattr(exc, "message"):
msg = exc.message
else:
msg = str(exc)
lines.append(f"{name}: {msg}")
super().__init__(
"Unable to decode value for '{}: No members matched:\n{}".format(
self.field, lines
)
)
self.initialized = True
def __str__(self):
if not self.initialized:
self.late_initialize()
return super().__str__()
def is_enum(field_type: Any) -> bool:
return issubclass_safe(field_type, Enum)
def issubclass_safe(klass: Any, base: Type) -> bool:
try:
return issubclass(klass, base)
except TypeError:
return False
def is_optional(field: Any) -> bool:
if str(field).startswith("typing.Union") or str(field).startswith(
"typing.Optional"
):
for arg in field.__args__:
if isinstance(arg, type) and issubclass(arg, type(None)):
return True
return False
TV = TypeVar("TV")
class FieldEncoder(Generic[TV]):
"""Base class for encoding fields to and from JSON encodable values"""
def to_wire(self, value: TV) -> JsonEncodable:
return value # type: ignore
def to_python(self, value: JsonEncodable) -> TV:
return value # type: ignore
@property
def json_schema(self) -> JsonDict:
raise NotImplementedError()
class DateTimeFieldEncoder(FieldEncoder[datetime]):
"""Encodes datetimes to RFC3339 format"""
def to_wire(self, value: datetime) -> str:
out = value.isoformat()
# Assume UTC if timezone is missing
if value.tzinfo is None:
return out + "Z"
return out
def to_python(self, value: JsonEncodable) -> datetime:
return (
value if isinstance(value, datetime) else parse(cast(str, value))
)
@property
def json_schema(self) -> JsonDict:
return {"type": "string", "format": "date-time"}
class UuidField(FieldEncoder[UUID]):
def to_wire(self, value: UUID) -> str:
return str(value)
def to_python(self, value) -> UUID:
return UUID(value)
@property
def json_schema(self) -> JsonDict:
# 'format': 'uuid' is not valid in "real" JSONSchema
return {
"type": "string",
"pattern": (
"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
),
}
_ValueEncoder = Callable[[Any, Any, bool], Any]
_ValueDecoder = Callable[[str, Any, Any], Any]
T = TypeVar("T", bound="JsonSchemaMixin")
@functools.lru_cache()
def _to_camel_case(value: str) -> str:
if "_" in value:
parts = value.split("_")
return "".join(
[parts[0]] + [part[0].upper() + part[1:] for part in parts[1:]]
)
else:
return value
@dataclass
class FieldMeta:
default: Any = None
description: Optional[str] = None
@property
def as_dict(self) -> Dict:
return {
_to_camel_case(k): v
for k, v in asdict(self).items()
if v is not None
}
@functools.lru_cache()
def _validate_schema(h_schema_cls: Hashable) -> JsonDict:
schema_cls = cast(Type[JsonSchemaMixin], h_schema_cls) # making mypy happy
schema = schema_cls.json_schema()
jsonschema.Draft7Validator.check_schema(schema)
return schema
# a restriction is a list of Field, str pairs
Restriction = List[Tuple[Field, str]]
# a restricted variant is a pair of an object that has fields with restrictions
# and those restrictions. Only JsonSchemaMixin subclasses may have restrictied
# fields.
Variant = Tuple[Type[T], Optional[Restriction]]
def _get_restrictions(variant_type: Type) -> Restriction:
"""Return a list of all restrictions on the given variant of a union, in
the form of a Field, name pair, where `name` is the field's name in json
and the Field is the dataclass-level field name.
If the variant isn't a JsonSchemaMixin subclass, there are no restrictions.
"""
if not issubclass_safe(variant_type, JsonSchemaMixin):
return []
restrictions: Restriction = []
for field, target_name in variant_type._get_fields():
if field.metadata and "restrict" in field.metadata:
restrictions.append((field, target_name))
return restrictions
def get_union_fields(field_type: Union[Any]) -> List[Variant]:
"""
Unions have a __args__ that is all their variants (after typing's
type-collapsing magic has run, so caveat emptor...)
JsonSchemaMixin dataclasses have `Field`s, returned by the `_get_fields`
method.
This method returns list of 2-tuples:
- the first value is always a type
- the second value is None if there are no restrictions, or a list of
restrictions if there are restrictions
The list will be sorted so that unrestricted variants will always be at the
end.
"""
fields: List[Variant] = []
for variant in field_type.__args__:
restrictions: Optional[Restriction] = _get_restrictions(variant)
if not restrictions:
restrictions = None
fields.append((variant, restrictions))
# put unrestricted variants last
fields.sort(key=lambda f: f[1] is None)
return fields
def _encode_restrictions_met(
value: Any, restrict_fields: Optional[List[Tuple[Field, str]]]
) -> bool:
if restrict_fields is None:
return True
return all(
(
hasattr(value, f.name)
and getattr(value, f.name) in f.metadata["restrict"]
)
for f, _ in restrict_fields
)
def _decode_restrictions_met(
value: Any, restrict_fields: Optional[List[Tuple[Field, str]]]
) -> bool:
if restrict_fields is None:
return True
return all(
n in value and value[n] in f.metadata["restrict"]
for f, n in restrict_fields
)
@dataclass
class CompleteSchema:
schema: JsonDict
definitions: JsonDict
_HOLOGRAM_LOCK = threading.RLock()
class JsonSchemaMixin:
"""Mixin which adds methods to generate a JSON schema and
convert to and from JSON encodable dicts with validation against the schema
"""
_field_encoders: ClassVar[Dict[Type, FieldEncoder]] = {
datetime: DateTimeFieldEncoder(),
UUID: UuidField(),
}
# Cache of the generated schema
_schema: ClassVar[Optional[Dict[str, CompleteSchema]]] = None
# Cache of field encode / decode functions
_encode_cache: ClassVar[Optional[Dict[Any, _ValueEncoder]]] = None
_decode_cache: ClassVar[Optional[Dict[Any, _ValueDecoder]]] = None
_mapped_fields: ClassVar[
Optional[Dict[Any, List[Tuple[Field, str]]]]
] = None
ADDITIONAL_PROPERTIES: ClassVar[bool] = False
@classmethod
def field_mapping(cls) -> Dict[str, str]:
"""Defines the mapping of python field names to JSON field names.
The main use-case is to allow JSON field names which are Python keywords
"""
return {}
@classmethod
def register_field_encoders(cls, field_encoders: Dict[Type, FieldEncoder]):
"""Registers additional custom field encoders. If called on the base, these are added globally.
The DateTimeFieldEncoder is included by default.
"""
if cls is not JsonSchemaMixin:
cls._field_encoders = {**cls._field_encoders, **field_encoders}
else:
cls._field_encoders.update(field_encoders)
def _local_to_dict(self, **kwargs):
return self.to_dict(**kwargs)
@classmethod
def _encode_field(
cls, field_type: Any, value: Any, omit_none: bool
) -> Any:
if value is None:
return value
try:
encoder = cls._encode_cache[field_type] # type: ignore
except (KeyError, TypeError):
if cls._encode_cache is None:
cls._encode_cache = {}
field_type_name = cls._get_field_type_name(field_type)
if field_type in cls._field_encoders:
def encoder(ft, v, __):
return cls._field_encoders[ft].to_wire(v)
elif is_enum(field_type):
def encoder(_, v, __):
return v.value
elif field_type_name in OPTIONAL_TYPES:
# Attempt to encode the field with each union variant.
# TODO: Find a more reliable method than this since in the case 'Union[List[str], Dict[str, int]]' this
# will just output the dict keys as a list
union_fields = get_union_fields(field_type)
for variant, restrict_fields in union_fields:
if _encode_restrictions_met(value, restrict_fields):
try:
encoded = cls._encode_field(
variant, value, omit_none
)
break
except (TypeError, AttributeError):
continue
if encoded is None:
raise TypeError(
"No variant of '{}' matched the type '{}'".format(
field_type, type(value)
)
)
return encoded
elif field_type_name in ("Mapping", "Dict"):
def encoder(ft, val, o):
return {
cls._encode_field(
ft.__args__[0], k, o
): cls._encode_field(ft.__args__[1], v, o)
for k, v in val.items()
}
elif field_type_name == "PatternProperty":
# TODO: is there some way to set __args__ on this so it can
# just re-use Dict/Mapping?
def encoder(ft, val, o):
return {
cls._encode_field(str, k, o): cls._encode_field(
ft.TARGET_TYPE, v, o
)
for k, v in val.items()
}
elif field_type_name == "List" or (
field_type_name == "Tuple" and ... in field_type.__args__
):
def encoder(ft, val, o):
if not isinstance(val, (tuple, list)):
valtype = type(val)
# raise a TypeError so the union encoder will capture it
raise TypeError(
f"Invalid type, expected {field_type_name} but got {valtype}"
)
return [
cls._encode_field(ft.__args__[0], v, o) for v in val
]
elif field_type_name == "Sequence":
def encoder(ft, val, o):
return [
cls._encode_field(ft.__args__[0], v, o) for v in val
]
elif field_type_name == "Tuple":
def encoder(ft, val, o):
return [
cls._encode_field(ft.__args__[idx], v, o)
for idx, v in enumerate(val)
]
elif cls._is_json_schema_subclass(field_type):
# Only need to validate at the top level
def encoder(_, v, o):
# this calls _local_to_dict in order to support
# combining this code with mashumaro
return v._local_to_dict(omit_none=o)
elif hasattr(field_type, "__supertype__"): # NewType field
def encoder(ft, v, o):
return cls._encode_field(ft.__supertype__, v, o)
else:
def encoder(_, v, __):
return v
cls._encode_cache[field_type] = encoder # type: ignore
return encoder(field_type, value, omit_none)
@classmethod
def _get_fields(cls) -> List[Tuple[Field, str]]:
if cls._mapped_fields is None:
cls._mapped_fields = {}
if cls.__name__ not in cls._mapped_fields:
mapped_fields = []
type_hints = get_type_hints(cls)
for f in fields(cls):
# Skip internal fields
if f.name.startswith("_"):
continue
# Note fields() doesn't resolve forward refs
f.type = type_hints[f.name]
mapped_fields.append(
(f, cls.field_mapping().get(f.name, f.name))
)
cls._mapped_fields[cls.__name__] = mapped_fields
return cls._mapped_fields[cls.__name__]
@classmethod
def _get_field_names(cls):
fields = cls._get_fields()
field_names = []
for element in fields:
field_names.append(element[1])
return field_names
def to_dict(
self, omit_none: bool = True, validate: bool = False
) -> JsonDict:
"""Converts the dataclass instance to a JSON encodable dict, with optional JSON schema validation.
If omit_none (default True) is specified, any items with value None are removed
"""
data = {}
for field, target_field in self._get_fields():
value = self._encode_field(
field.type, getattr(self, field.name), omit_none
)
if omit_none and value is None:
continue
data[target_field] = value
if validate:
self.validate(data)
return data
@classmethod
def _decode_field(
cls, field: str, field_type: Any, value: Any, validate: bool
) -> Any:
if value is None:
return None
decoder = None
try:
decoder = cls._decode_cache[field_type] # type: ignore
except (KeyError, TypeError):
if (
type(value) in JSON_ENCODABLE_TYPES
and field_type in JSON_ENCODABLE_TYPES
):
return value
if cls._decode_cache is None:
cls._decode_cache = {}
# Replace any nested dictionaries with their targets
field_type_name = cls._get_field_type_name(field_type)
if field_type in cls._field_encoders:
def decoder(_, ft, val):
return cls._field_encoders[ft].to_python(val)
elif cls._is_json_schema_subclass(field_type):
def decoder(_, ft, val):
return ft.from_dict(val, validate=validate)
elif field_type_name in OPTIONAL_TYPES:
# Attempt to decode the value using each decoder in turn
union_excs = (
AttributeError,
TypeError,
ValueError,
ValidationError,
)
errors: Dict[str, Exception] = {}
union_fields = get_union_fields(field_type)
for variant, restrict_fields in union_fields:
if _decode_restrictions_met(value, restrict_fields):
try:
return cls._decode_field(
field, variant, value, True
)
except union_excs as exc:
errors[str(variant)] = exc
continue
# none of the unions decoded, so report about all of them
raise FutureValidationError(field, errors)
elif field_type_name in ("Mapping", "Dict"):
def decoder(f, ft, val):
return {
cls._decode_field(
f, ft.__args__[0], k, validate
): cls._decode_field(f, ft.__args__[1], v, validate)
for k, v in val.items()
}
elif field_type_name == "List" or (
field_type_name == "Tuple" and ... in field_type.__args__
):
seq_type = tuple if field_type_name == "Tuple" else list
def decoder(f, ft, val):
if not isinstance(val, (tuple, list)):
valtype = type(val)
# raise a TypeError so the Union decoder will capture it
raise TypeError(
f"Invalid type, expected {field_type_name} but got {valtype}"
)
return seq_type(
cls._decode_field(f, ft.__args__[0], v, validate)
for v in val
)
# if you want to allow strings as sequences for some reason, you
# can still use 'Sequence' to get back a list of characters...
elif field_type_name == "Sequence":
def decoder(f, ft, val):
return list(
cls._decode_field(f, ft.__args__[0], v, validate)
for v in val
)
elif field_type_name == "Tuple":
def decoder(f, ft, val):
return tuple(
cls._decode_field(f, ft.__args__[idx], v, validate)
for idx, v in enumerate(val)
)
elif hasattr(field_type, "__supertype__"): # NewType field
def decoder(f, ft, val):
return cls._decode_field(
f, ft.__supertype__, val, validate
)
elif is_enum(field_type):
def decoder(_, ft, val):
return ft(val)
elif field_type is Any:
def decoder(_, __, val):
return val
if decoder is None:
raise ValidationError(
f"Unable to decode value for '{field}: {field_type_name}' (value={value})"
)
return value
cls._decode_cache[field_type] = decoder
return decoder(field, field_type, value)
@classmethod
def _find_matching_validator(cls: Type[T], data: JsonDict) -> T:
if cls is not JsonSchemaMixin:
raise NotImplementedError
decoded = None
for subclass in cls.__subclasses__():
try:
if is_dataclass(subclass):
return subclass.from_dict(data)
except ValidationError:
continue
if decoded is None:
raise ValidationError("No matching validator for data.")
return decoded
@classmethod
def from_dict(cls: Type[T], data: JsonDict, validate=True) -> T:
"""Returns a dataclass instance with all nested classes converted from the dict given"""
if cls is JsonSchemaMixin:
return cls._find_matching_validator(data)
init_values: Dict[str, Any] = {}
non_init_values: Dict[str, Any] = {}
if validate:
cls.validate(data)
for field, target_field in cls._get_fields():
values = init_values if field.init else non_init_values
if target_field in data or (
field.default == MISSING
and field.default_factory == MISSING # type: ignore
):
values[field.name] = cls._decode_field(
field.name, field.type, data.get(target_field), validate
)
# Need to ignore the type error here, since mypy doesn't know that
# subclasses are dataclasses
instance = cls(**init_values) # type: ignore
for field_name, value in non_init_values.items():
setattr(instance, field_name, value)
return instance
@staticmethod
def _is_json_schema_subclass(field_type: Type) -> bool:
return issubclass_safe(field_type, JsonSchemaMixin)
@staticmethod
def _has_definition(field_type: Type) -> bool:
return (
issubclass_safe(field_type, JsonSchemaMixin)
and field_type.__name__ != "PatternProperty"
)
@classmethod
def _get_field_meta(cls, field: Field) -> Tuple[FieldMeta, bool]:
required = True
field_meta = FieldMeta()
default_value: Optional[Callable[[], Any]] = None
if field.default is not MISSING and field.default is not None:
# In case of default value given
default_value = field.default
elif (
field.default_factory is not MISSING # type: ignore
and field.default_factory is not None # type: ignore
): # type: ignore
# In case of a default factory given, we call it
default_value = field.default_factory() # type: ignore
if default_value is not None:
field_meta.default = cls._encode_field(
field.type, default_value, omit_none=False
)
required = False
if field.metadata is not None:
if "description" in field.metadata:
field_meta.description = field.metadata["description"]
return field_meta, required
@classmethod
def _encode_restrictions(
cls, restrictions: Union[List[Any], Type[Enum]]
) -> JsonDict:
field_schema: JsonDict = {}
member_types = set()
values = []
for member in restrictions:
if isinstance(member, Enum):
value = member.value
else:
value = member
member_types.add(type(value))
values.append(value)
if len(member_types) == 1:
member_type = member_types.pop()
if member_type in JSON_ENCODABLE_TYPES:
field_schema.update(JSON_ENCODABLE_TYPES[member_type])
else:
field_schema.update(
cls._field_encoders[member_type].json_schema
)
else:
# hologram used to silently do nothing here, which seems worse
raise ValidationError(
"Invalid schema defined: Found multiple member types - {!s}".format(
member_types
)
)
field_schema["enum"] = values
return field_schema
@classmethod
def _get_schema_for_type(
cls,
target: Type,
required: bool = True,
restrictions: Optional[List[Any]] = None,
) -> Tuple[JsonDict, bool]:
field_schema: JsonDict = {"type": "object"}
type_name = cls._get_field_type_name(target)
if target in cls._field_encoders:
field_schema.update(cls._field_encoders[target].json_schema)
elif restrictions:
field_schema.update(cls._encode_restrictions(restrictions))
# if Union[..., None] or Optional[...]
elif type_name in OPTIONAL_TYPES:
field_schema = {
"oneOf": [
cls._get_field_schema(variant)[0]
for variant in target.__args__
]
}
if is_optional(target):
required = False
elif is_enum(target):
field_schema.update(cls._encode_restrictions(target))
elif type_name in ("Dict", "Mapping"):
field_schema = {"type": "object"}
if target.__args__[1] is not Any:
field_schema["additionalProperties"] = cls._get_field_schema(
target.__args__[1]
)[0]
elif type_name == "PatternProperty":
field_schema = {"type": "object"}
field_schema["patternProperties"] = {
".*": cls._get_field_schema(target.TARGET_TYPE)[0]
}
elif type_name in ("Sequence", "List") or (
type_name == "Tuple" and ... in target.__args__
):
field_schema = {"type": "array"}
if target.__args__[0] is not Any:
field_schema["items"] = cls._get_field_schema(
target.__args__[0]
)[0]
elif type_name == "Tuple":
tuple_len = len(target.__args__)
# TODO: How do we handle Optional type within lists / tuples
field_schema = {
"type": "array",
"minItems": tuple_len,
"maxItems": tuple_len,
"items": [
cls._get_field_schema(type_arg)[0]
for type_arg in target.__args__
],
}
elif target in JSON_ENCODABLE_TYPES:
field_schema.update(JSON_ENCODABLE_TYPES[target])
elif hasattr(target, "__supertype__"): # NewType fields
field_schema, _ = cls._get_field_schema(target.__supertype__)
else:
raise ValidationError(f"Unable to create schema for '{type_name}'")
return field_schema, required
@classmethod
def _get_field_schema(
cls, field: Union[Field, Type]
) -> Tuple[JsonDict, bool]:
required = True
restrictions = None
if isinstance(field, Field):
field_type = field.type
field_meta, required = cls._get_field_meta(field)
if field.metadata is not None:
restrictions = field.metadata.get("restrict")
else:
field_type = field
field_meta = FieldMeta()
field_type_name = cls._get_field_type_name(field_type)
if cls._has_definition(field_type):
field_schema: JsonDict = {
"$ref": "#/definitions/{}".format(field_type_name)
}
else:
field_schema, required = cls._get_schema_for_type(
field_type, required=required, restrictions=restrictions
)
field_schema.update(field_meta.as_dict)
return field_schema, required
@classmethod
def _get_field_definitions(cls, field_type: Any, definitions: JsonDict):
field_type_name = cls._get_field_type_name(field_type)
if field_type_name == "Tuple":
# tuples are either like Tuple[T, ...] or Tuple[T1, T2, T3].
for member in field_type.__args__:
if member is not ...:
cls._get_field_definitions(member, definitions)
elif field_type_name in ("Sequence", "List"):
cls._get_field_definitions(field_type.__args__[0], definitions)
elif field_type_name in ("Dict", "Mapping"):
cls._get_field_definitions(field_type.__args__[1], definitions)
elif field_type_name == "PatternProperty":
cls._get_field_definitions(field_type.TARGET_TYPE, definitions)
elif field_type_name in OPTIONAL_TYPES:
for variant in field_type.__args__:
cls._get_field_definitions(variant, definitions)
elif cls._is_json_schema_subclass(field_type):
# Prevent recursion from forward refs & circular type dependencies
if field_type.__name__ not in definitions:
definitions[field_type.__name__] = None
definitions.update(
field_type._json_schema_recursive(
embeddable=True, definitions=definitions
)
)
@classmethod
def all_json_schemas(cls) -> JsonDict:
"""Returns JSON schemas for all subclasses"""
definitions = {}
for subclass in cls.__subclasses__():
if is_dataclass(subclass):
definitions.update(subclass.json_schema(embeddable=True))
else:
definitions.update(subclass.all_json_schemas())
return definitions
@classmethod
def _collect_json_schema(cls, definitions: JsonDict) -> JsonDict:
"""Return the schema dictionary and update the definitions dictionary
for this class.
"""
properties = {}
required = []
for field, target_field in cls._get_fields():
properties[target_field], is_required = cls._get_field_schema(
field
)
cls._get_field_definitions(field.type, definitions)
if is_required:
required.append(target_field)
schema = {
"type": "object",
"required": required,
"properties": properties,
"additionalProperties": cls.ADDITIONAL_PROPERTIES,
}
if cls.__doc__:
schema["description"] = cls.__doc__
return schema
@classmethod
def _schema_defs_from_cache(cls, definitions: JsonDict) -> CompleteSchema:
# this has to be done at the classmethod level because each subclass
# needs its own dict, and we don't want to use metaclasses here (it
# makes it hard for users to use metaclasses)
if cls._schema is None:
with _HOLOGRAM_LOCK:
# check again, in case we were waiting for someone else to do
# this.
if cls._schema is None:
cls._schema = {}
if cls.__name__ in cls._schema:
return cls._schema[cls.__name__]
with _HOLOGRAM_LOCK:
if cls.__name__ in cls._schema:
return cls._schema[cls.__name__]
# ok, no schema found. go build schemas
schema = cls._collect_json_schema(definitions)
complete_schema = CompleteSchema(
schema=schema, definitions=definitions
)
# now that we finished, write our schema in. In the worst-case we write
# over another thread's work.
cls._schema[cls.__name__] = complete_schema
return complete_schema
@classmethod
def _json_schema_recursive(
cls, embeddable: bool, definitions: JsonDict
) -> JsonDict:
schema = cls._schema_defs_from_cache(definitions)
if embeddable:
return {**schema.definitions, cls.__name__: schema.schema}
return {
**schema.schema,
**{
"definitions": schema.definitions,
"$schema": "http://json-schema.org/draft-07/schema#",
},
}
@classmethod
def json_schema(cls, embeddable: bool = False) -> JsonDict:
"""Returns the JSON schema for the dataclass, along with the schema of any nested dataclasses
within the 'definitions' field.
Enable the embeddable flag to generate the schema in a format for embedding into other schemas
or documents supporting JSON schema such as Swagger specs.
"""
if cls is JsonSchemaMixin:
warnings.warn(
"Calling 'JsonSchemaMixin.json_schema' is deprecated. Use 'JsonSchemaMixin.all_json_schemas' instead",
DeprecationWarning,
)
return cls.all_json_schemas()
definitions: JsonDict = {}
return cls._json_schema_recursive(
embeddable=embeddable, definitions=definitions
)
@staticmethod
def _get_field_type_name(field_type: Any) -> str:
try:
return field_type.__name__
except AttributeError:
# The types in the 'typing' module lack the __name__ attribute
match = re.match(r"typing\.([A-Za-z]+)", str(field_type))
return str(field_type) if match is None else match.group(1)
@classmethod
def validate(cls, data: Any):
h_cls = cast(Hashable, cls)
schema = _validate_schema(h_cls)
validator = jsonschema.Draft7Validator(schema)
error = next(iter(validator.iter_errors(data)), None)
if error is not None:
raise ValidationError.create_from(error) from error