dbt-selly/dbt-env/lib/python3.8/site-packages/agate/utils.py

319 lines
8.6 KiB
Python
Raw Normal View History

2022-03-22 15:13:27 +00:00
#!/usr/bin/env python
# -*- coding: utf8 -*-
"""
This module contains a collection of utility classes and functions used in
agate.
"""
from collections import OrderedDict, Sequence
from functools import wraps
import math
import string
import warnings
from slugify import slugify as pslugify
from agate.warns import warn_duplicate_column, warn_unnamed_column
try:
from cdecimal import Decimal, ROUND_FLOOR, ROUND_CEILING, getcontext
except ImportError: # pragma: no cover
from decimal import Decimal, ROUND_FLOOR, ROUND_CEILING, getcontext
import six
#: Sentinal for use when `None` is an valid argument value
default = object()
def memoize(func):
"""
Dead-simple memoize decorator for instance methods that take no arguments.
This is especially useful since so many of our classes are immutable.
"""
memo = None
@wraps(func)
def wrapper(self):
if memo is not None:
return memo
return func(self)
return wrapper
class NullOrder(object):
"""
Dummy object used for sorting in place of None.
Sorts as "greater than everything but other nulls."
"""
def __lt__(self, other):
return False
def __gt__(self, other):
if other is None:
return False
return True
class Quantiles(Sequence):
"""
A class representing quantiles (percentiles, quartiles, etc.) for a given
column of Number data.
"""
def __init__(self, quantiles):
self._quantiles = quantiles
def __getitem__(self, i):
return self._quantiles.__getitem__(i)
def __iter__(self):
return self._quantiles.__iter__()
def __len__(self):
return self._quantiles.__len__()
def __repr__(self):
return repr(self._quantiles)
def locate(self, value):
"""
Identify which quantile a given value is part of.
"""
i = 0
if value < self._quantiles[0]:
raise ValueError('Value is less than minimum quantile value.')
if value > self._quantiles[-1]:
raise ValueError('Value is greater than maximum quantile value.')
if value == self._quantiles[-1]:
return Decimal(len(self._quantiles) - 1)
while value >= self._quantiles[i + 1]:
i += 1
return Decimal(i)
def median(data_sorted):
"""
Finds the median value of a given series of values.
:param data_sorted:
The values to find the median of. Must be sorted.
"""
length = len(data_sorted)
if length % 2 == 1:
return data_sorted[((length + 1) // 2) - 1]
half = length // 2
a = data_sorted[half - 1]
b = data_sorted[half]
return (a + b) / 2
def max_precision(values):
"""
Given a series of values (such as a :class:`.Column`) returns the most
significant decimal places present in any value.
:param values:
The values to analyze.
"""
max_whole_places = 1
max_decimal_places = 0
precision = getcontext().prec
for value in values:
if value is None or math.isnan(value):
continue
sign, digits, exponent = value.normalize().as_tuple()
exponent_places = exponent * -1
whole_places = len(digits) - exponent_places
if whole_places > max_whole_places:
max_whole_places = whole_places
if exponent_places > max_decimal_places:
max_decimal_places = exponent_places
# In Python 2 it was possible for the total digits to exceed the
# available context precision. This ensures that can't happen. See #412
if max_whole_places + max_decimal_places > precision: # pragma: no cover
max_decimal_places = precision - max_whole_places
return max_decimal_places
def make_number_formatter(decimal_places, add_ellipsis=False):
"""
Given a number of decimal places creates a formatting string that will
display numbers with that precision.
:param decimal_places:
The number of decimal places
:param add_ellipsis:
Optionally add an ellipsis symbol at the end of a number
"""
fraction = u'0' * decimal_places
ellipsis = u'' if add_ellipsis else u''
return u''.join([u'#,##0.', fraction, ellipsis, u';-#,##0.', fraction, ellipsis])
def round_limits(minimum, maximum):
"""
Rounds a pair of minimum and maximum values to form reasonable "round"
values suitable for use as axis minimum and maximum values.
Values are rounded "out": up for maximum and down for minimum, and "off":
to one higher than the first significant digit shared by both.
See unit tests for examples.
"""
min_bits = minimum.normalize().as_tuple()
max_bits = maximum.normalize().as_tuple()
max_digits = max(
len(min_bits.digits) + min_bits.exponent,
len(max_bits.digits) + max_bits.exponent
)
# Whole number rounding
if max_digits > 0:
multiplier = Decimal('10') ** (max_digits - 1)
min_fraction = (minimum / multiplier).to_integral_value(rounding=ROUND_FLOOR)
max_fraction = (maximum / multiplier).to_integral_value(rounding=ROUND_CEILING)
return (
min_fraction * multiplier,
max_fraction * multiplier
)
max_exponent = max(min_bits.exponent, max_bits.exponent)
# Fractional rounding
q = Decimal('10') ** (max_exponent + 1)
return (
minimum.quantize(q, rounding=ROUND_FLOOR).normalize(),
maximum.quantize(q, rounding=ROUND_CEILING).normalize()
)
def letter_name(index):
"""
Given a column index, assign a "letter" column name equivalent to
Excel. For example, index ``4`` would return ``E``.
Index ``30`` would return ``EE``.
"""
letters = string.ascii_lowercase
count = len(letters)
return letters[index % count] * ((index // count) + 1)
def parse_object(obj, path=''):
"""
Recursively parse JSON-like Python objects as a dictionary of paths/keys
and values.
Inspired by JSONPipe (https://github.com/dvxhouse/jsonpipe).
"""
if isinstance(obj, dict):
iterator = obj.items()
elif isinstance(obj, (list, tuple)):
iterator = enumerate(obj)
else:
return {path.strip('/'): obj}
d = OrderedDict()
for key, value in iterator:
key = six.text_type(key)
d.update(parse_object(value, path + key + '/'))
return d
def issequence(obj):
"""
Returns :code:`True` if the given object is an instance of
:class:`.Sequence` that is not also a string.
"""
return isinstance(obj, Sequence) and not isinstance(obj, six.string_types)
def deduplicate(values, column_names=False, separator='_'):
"""
Append a unique identifer to duplicate strings in a given sequence of
strings. Identifers are an underscore followed by the occurance number of
the specific string.
['abc', 'abc', 'cde', 'abc'] -> ['abc', 'abc_2', 'cde', 'abc_3']
:param column_names:
If True, values are treated as column names. Warnings will be thrown
if column names are None or duplicates. None values will be replaced with
letter indices.
"""
final_values = []
for i, value in enumerate(values):
if column_names:
if not value:
new_value = letter_name(i)
warn_unnamed_column(i, new_value)
elif isinstance(value, six.string_types):
new_value = value
else:
raise ValueError('Column names must be strings or None.')
else:
new_value = value
final_value = new_value
duplicates = 0
while final_value in final_values:
final_value = new_value + separator + str(duplicates + 2)
duplicates += 1
if column_names and duplicates > 0:
warn_duplicate_column(new_value, final_value)
final_values.append(final_value)
return tuple(final_values)
def slugify(values, ensure_unique=False, **kwargs):
"""
Given a sequence of strings, returns a standardized version of the sequence.
If ``ensure_unique`` is True, any duplicate strings will be appended with
a unique identifier.
agate uses an underscore as a default separator but this can be changed with
kwargs.
Any kwargs will be passed to the slugify method in python-slugify. See:
https://github.com/un33k/python-slugify
"""
slug_args = {'separator': '_'}
slug_args.update(kwargs)
if ensure_unique:
new_values = tuple(pslugify(value, **slug_args) for value in values)
return deduplicate(new_values, separator=slug_args['separator'])
else:
return tuple(pslugify(value, **slug_args) for value in values)